80854 (597675), страница 19
Текст из файла (страница 19)
Найпростіший спосіб підрахувати кількість магазинів кожного типу це шляхом створення на новому робочому аркуші зведеної таблиці, для чого потрібно виконати такі дії:
1. Встановити курсор на будь-який клітині списку магазинів.
-
Вибрати з меню команду Дані/Зведена таблиця.
-
Перший крок Майстра зведених таблиць – вибрати режим «у списку або базі даних Microsoft Excel».
-
Другий крок – клацнути по кнопці Далі.
-
Третій крок:
-
перетягнути поле Тип магазину в область діаграми Колонка;
-
ще раз перетягнути поле Тип магазину в область діаграми Дані та подвійно клацнути по ньому лівою кнопкою миші;
-
у діалоговому вікні Обчислення поля вільної таблиці вибрати операцію Кількість значень і клацнути по кнопці ОК;
-
закінчити формування зведеної таблиці натиснувши кнопку Готово.
Таблиця, яка створюється Майстром зведених таблиць (рис. 8.4), буде займати лише перші три рядки (ці рядки виділені жирним курсивом).
А | В | с | ||
1 | Кол-во значений по полю Тип магазина | Тип магазина | ||
2 | Культтовари | Универмаг | Общий итог | |
3 | Всего | 41 | 11 | 52 |
4 | Кількість магазинів у вибірці | =ОКРУГЛ (Доля В*ВЗ) | = ОКРУГЛ (Доля В*СЗ) | |
5 | Генератори псевдо-випадкових чисел | = 1 + ЦЕЛОЕ (ВЗ* СЛЧИСЛ() ) | ||
6 |
Рис. 8.4 Вигляд зведеної таблиці (перших три рядки) списку магазинів
У четвертий рядок, безпосередньо за останнім рядком зведеної таблиці, з метою отримання для кожного типу магазину такого розміру вибірки, щоб вона була пропорційна чисельності даного типу магазину, в клітини В4 та С4 вводяться формули, що обчислюють добуток частки вибірки (ЧасткаВ), яка відповідає вибраній довірчій імовірності (обчислюється у клітині дев'ятого рядка таблиці на рис. 2) і чисельності відповідного типу магазину.
Найпростіший спосіб відбору одиниць у вибіркову сукупність — за допомогою псевдовипадкових чисел. Саме цей спосіб доцільно застосувати для включення у вибірку конкретних магазинів, тобто для визначення опорних магазинів з вивчення споживацького попиту. Техніка використання псевдовипадкових чисел може бути такою:
-
рядки таблиці (рис. 4) закріплюються на екрані. Для цього табличний курсор розміщується у клітині D6 і виконується команда Вікно/Закріпити області;
-
у клітину В5 уводиться формула, яка завдяки використанню функції СЛЧИС() виконуватиме роль генератора випадкових чисел у діапазоні від 1 до кількості магазинів відповідного типу, тобто — роль генератора випадкових порядкових номерів магазинів відповідного типу у їхньому списку. Функція СЛЧИС() повертає рівномірно розподілене випадкове число, що більше або дорівнює нулю і менше одиниці. Нове випадкове число повертається цією функцією кожного разу, коли перераховується робочий аркуш;
-
після уведення формули і натискання клавіші Enter у клітині В5 буде відображено порядковий номер магазину, який може виконувати роль опорного магазину типу «Культтовари». Далі потрібно змістити табличний курсор у клітину В6, занести туди цей номер і натиснути клавішу Enter (а або клавішу ↓). У клітині В5 з'явиться порядковий номер наступного магазину. Кількість повторів цієї операції визначається значенням клітини B4;
-
після копіювання формули з клітини B5 у клітину С5 аналогічно визначаються опорні магазини типу «Універмаг».
Нехай проведено анкетування 10000 сімей з метою отримати відповіді на певні питання, наприклад:
-
наскільки населення регіону забезпечене певним виробом;
-
який середній термін експлуатації цього виробу;
-
середній «вік» зношення виробів, що перебувають в експлуатації.
Нехай було розіслано 255 анкет, з них повернулося 208, в них було виявлено, що 183 сім'ї вже мають зазначений виріб. На викладене в анкеті прохання вказати термін експлуатації виробу отримані такі відповіді: вироби, що використовувалися до 3 років, мають 26 сімей, від 4 до 6 років — 53 сім'ї, від 7 до 9 років — 102 сім'ї, від 10 років і більше — 27 сімей. Кількість сімей, що висловили бажання про заміну експлуатованого виробу на більш сучасний — 137 (рис. 8.5).
A | B | C | D | E | F | ||
| ОБРОБКА РЕЗУЛЬТАТІВ ОПИТУВННЯ | ||||||
| Термін експлуатації виробу | Середнє значення терміну експлуатації (х) | Кількість сімей, що мають виріб (f) | x*f | (x-xcep)2*f | ||
| До 3 років | 2 | 26 | =С3*D3 | =(С3-С$14)^2*D3 | ||
| Від 4 до 6 років | 5 | 53 | =С4*D4 | =(С4-С$14)^2*D4 | ||
| Від 7 до 9 років | 8 | 102 | =С5*D5 | =(С5-С$14)^2*D5 | ||
| Від 10 років і більше | 12 | 27 | =С6*D6 | =(С6-С$14)^2*D6 | ||
| Разом | = СУММ (D3:D6) | = СУММ (Е3:Е6) | = СУММ(F3:F6) | |||
| |||||||
| Кількість сімей | 10000 | |||||
| Відправлено анкет | 255 | |||||
| Отримано відповідей | 208 | |||||
| Кількість сімей, що мають виріб | =D7 | |||||
| Кількість сімей, що планують заміну виробу | 137 | |||||
| Ступінь забезпеченості товаром, w | =С12/С11 | |||||
| Середній вік виробу (у населення), xcep | =ОКРУГЛ(Е7/D7;1) | |||||
| Середній вік зношення виробу | =ОКРУГЛ(С15*С12/С13; 1) | |||||
| Дисперсія середнього віку виробу (у населення) | =F7/D7 | |||||
| Коефіцієнт кратності помилки (t) | 2 | |||||
| Гранична помилка забезпеченості товаром | =С17* КОРЕНЬ((С14* (1-С14)/С11)*(1-СІ1/С9)) | |||||
| Гран, помилка серед, терміну експлуатації | =С17* КОРЕНЬ((С17/С11)*(1-С11/С9)) |
Рис. 8.5 Формули для обробки результатів опитування
Результати обчислень наведені на рис. 8. 6
А | В | С | Е | Р | ||
1 | ОБРОБКА РЕЗУЛЬТАТІВ ОПИТУВАННЯ | |||||
2 | Термін експлуатації виробу | Середнє значення терміну експлуатації (х) | Кількість сімей, що мають виріб (f) | x*f | (x-xcep)2*f | |
3 | До 3 років | 2 | 21 | 42 | 525 | |
4 | Від 4 до 6 років | 5 | 47 | 235 | 188 | |
5 | Від 7 до 9 років | 8 | 96 | 768 | 96 | |
6 | Від 10 років і більше | 12 | 19 | 228 | 475 | |
7 | Разом | 183 | 1273 | 1284 | ||
8 | ||||||
9 | Кількість сімей у регіоні | 10000 | ||||
10 | Відправлено анкет | 255 | ||||
11 | Отримано відповідей | 208 | ||||
12 | Кількість сімей, що мають виріб | 183 | ||||
13 | Кількість сімей, що планують заміну виробу | 147 | ||||
14 | Ступінь забезпеченості товаром, ю | 88% | ||||
15 | Середній вік експлуатованих виробів, Хсep | 7,0 | ||||
16 | Середній вік зношення виробу | 8,7 | ||||
17 | Дисперсія середньої | 7,02 | ||||
18 | Коефіцієнт кратності помилки (t) | 2,00 | ||||
18 | Гранична помилка забезпеченості сімей товаром | 4,5% | ||||
20 | Гранична помилка середнього терміну експлуатації | 0,36 |
Рис. 8.6 Обробка результатів опитування
Ступінь забезпеченості сімей товаром (клітина C14) визначається як відношення кількості сімей, що використовують виріб (клітина D7), до загальної кількості отриманих відповідей (клітина C11).
Для визначення середнього віку виробів (клітина СІ5), що має населення, і дисперсії середньої (клітина СІ7) використовуються формули:
Гранична помилка ступеня забезпеченості сімей товаром обчислюється (у клітині С18 за формулою для альтернативної ознаки:
1