62365 (597559)

Файл №597559 62365 (Загальні уявлення про індуктивні фільтри)62365 (597559)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Лекція

Загальні уявлення про індуктивні фільтри

Зміст

Вступ

1. Фільтри верхніх частот (ФВЧ)

2. Смугові фільтри та інші типи індукційних фільтрів

3. Вплив навантаження на характеристики фільтрів

Висновок

Вступ

В даній лекції будуть розглянуті фізичні процеси у фільтрах верхніх частот, смугових, загороджувальних, режекторних. Ці фільтри як і фільтри нижніх частот широко використовуються в апаратурі радіозв’язку, радіорелейному зв’язку, а особливо в системах передачі з частотним розділом каналів.

Учбово-виховні цілі: Вивчити принципи побудови фільтрів верхніх частот, смугових та режекторних фільтрів, області їх використання; Виховати високу культуру інженера-зв’язківця.

Учбово-матеріальне забезпечення: Принципіальні схеми апаратури, її функціональні вузли з ФВЧ та СФ\П-303\, Діапроектор, діапозитиви.

Виявляється, що використовуючи так званий метод перетворення частоти, можна при розрахунках фільтрів верхніх частот та інших фільтрів використати всі методи, формули, малограми та таблиці, одержані для фільтрів нижніх частот.

У вступі акцентувати увагу курсантів на важливість теми вивчення, використовуючи схеми та блоки реальної апаратури зв’язку. Показати широке застосування різних видів фільтрів.

У першому питанні коротко викласти суть методу частотної змінної та на його основі дати алгоритм одержання фільтрів верхніх частот з фільтрів нижніх частот.

У другому питанні теж, використовуючи метод частотної змінної, показати принцип одержання смугових фільтрів, загороджувальних, режекторних фільтрів з ФНЧ прототипів.

У третьому питанні показати, як змінюються параметри та характеристики фільтрів при підключення до них навантаження та зміни її другої величини.

В заключній частині узагальнити матеріал і ще раз акцентувати увагу на вузлових моментах теми.

1. Фільтри верхніх частот (фвч)

При розгляданні принципів побудови фільтрів верхніх частот почнемо з розгляду сутності методу перетворення частотної змінної.

Практично всі фільтри верхніх частот можна одержати з фільтрів нижніх частот, якщо в останніх кожну індуктивність замінити ємністю, а кожну ємність – індуктивністю. (мал.1)

мал. 1 а ). б ). в ).

Затухання ФНЧ виражається співвідношенням дб., тобто є парною функцією частоти , з цього слідує – крива затухання буде симетрична відносно осі ординат (мал. 2)

мал. 2

Ліва частина цього графіку відповідає взаємному розміщенню смуги затримки та смуги пропускання для фільтрів верхніх частот. (мал. 3)

мал. 3

Підберемо таку функцію, яка б перетворила від’ємну піввісь (мал.2) в додатну (мал. 3) піввісь.

При цьому точці (мал. 2) повинна відповідати точка “0” (мал. 3)

"-1" " "

"0" " "

Очевидно, що такою функцією буде така:

(1)

Таким чином, всі вирази, одержані раніш для фільтрів нижніх частот, будуть вірні і для фільтрів верхніх частот, якщо в цих виразах визначатиметься із співвідношення (1).

Нормуванні по частоті дозволяє при розрахунках фільтрів верхніх частот з характеристиками Баттерворта, Чебишева, Золотарьова або з довільним розміщенням сплесків затухання повністю використовувати всі методи, формули, номограми та таблиці, одержані для фільтрів верхніх частот. В якості прикладу на (мал. 4) наведені схеми та характеристики деяких фільтрів верхніх частот з рівнохвильовими характеристиками затухання, а на (мал. 5) схема фільтра к -2,0 апаратури П-303 та графік частотної залежності робочого затухання цього фільтру.

мал. 4

мал. 5

2. Смугові фільтри та інші типи індукційних фільтрів

Смуговий фільтр може бути утворений з фільтру нижніх частот, якщо в останньому кожну індуктивність замінити послідовним коливальним контуром без втрат, а кожну ємність – паралельним, при чому резонансні частоти всіх контурів взяти однаковими (мал. 6)

ФНЧ СФ

мал.6

Тоді до частоти резонансу характер опору віток, одержаного фільтра, буде таким самим як і у фільтра верхніх частот, а після частоти резонансу – таким самим як у фільтра нижніх частот. Фільтр же в цілому буде смуговим фільтром, при ому частота резонансних контурів буде очевидно знаходитись у смузі пропускання фільтру.

Підберемо таку функцію яка б перетворила вісь частот ( ) (мал. 2) у піввісь ( ) (мал. 7)

мал. 7

При цьому:

Точці "- " (мал. 2) повинна відповідати точка "0" (мал. 7).

" -1" " "

"0" " "

"1" " "

" " " "

Таке перетворення може зробити функція:

(2)

Таким чином, всі вирази, одержані раніш для фільтрів нижніх частот, залишаються справедливими і для розглядуваних смугових фільтрів, якщо в цих виразах визначати з відношення (2).

Важливо відмітити, що частотні характеристики розглянутих фільтрів володіють однією характерною особливістю, яка обумовлена тим, що функція (2) приймає рівні по абсолютній величині і обернені за знаком значення для будь-якої пари частот та зв’язаних співвідношенням , тобто для будь-якої пари частот, розміщених симетрично відносно осі части , яка в свою чергу являється середньою геометричною частотою смуги пропускання фільтра.

Отже затухання фільтра при частотах та буде однаковим, тобто характеристика затухання будь-якого речового фільтра, одержаного з допомогою перетворення (2) завжди буде геометрично симетрична відносно частоти відповідає графічна ілюстрація на (мал. 7)

Тому подібні фігури одержали назви фільтрів з симетричними (геометричними) характеристиками загасання.

Практичне використання фільтрів, розглянутих вище, обмежено лише тими випадками, коли вимоги до характеристики затухання фільтра по обидві сторони від його смуги пропускання близькі до симетричних. В іншому випадку в деяких частотних областях буде мати місце невиправданий великий запас затухання, що говорить про існування більш економічного рішення по числу елементів. У відповідності з цим в загальному випадку смуговий фільтр може мати різне число сплесків зліва і справа від йог смуги пропускання, різну крутизну характеристики затухання при та при , що різко відрізняються по широті смуги переходу, коротшу характеристику затухання, яка суттєво відрізняється від симетричної.

Одна й та сама передаточна функція смугового фільтру може бути реалізована тим більшим числом, зовнішньо розрізняючих ступінчатих реактивних чотирьохполюсників, чим вище порядок функції. Частіше інших знаходять застосування фільтри, схеми яких подібні до схем фільтрів з симетричними характеристиками, схеми у вигляді каскадного з’єднання фільтра нижніх і верхніх частот. Крім ФНЧ, ФВЧ, СФ в техніці часто використовуються режекторні або, як їх іще називають, загороджувальні фільтри.

Характеристика загороджувального фільтра має вигляд, зображений на (мал. 8)

мал. 8

Якщо зрівняти цю характеристику смугового фільтра, то можна побачити, загороджувальний фільтр має характеристику затухання обернену до характеристики СФ, отже він також може бути одержаний з ФНЧ – прототипу, однак в цьому випадку в ФНЧ кожну ємність замінити послідовним коливальним контуром, а індуктивність – паралельним (мал. 9) причому резонансна частота всіх контурів повинна бути однаковою, тоді очевидно, що такий фільтр буде вільно (з малим затуханням) пропускати всі частоти нижчі і вище резонансної частоти контурів, а на частотах близьких до резонансу затухання фільтру буде великим, так як послідовні контури будуть надавати штучну дію на вхідний сигнал, а паралельний контур буде мати для нього великий опір.

ФНЧ СФ \ ЗФ

мал. 9

У радіолокаційній техніці широко використовується гребінчасті фільтри, у яких смуги пропускання чергуються зі смугами затримки. Е багато способів одержання гребінчастої характеристики затухання. Найпростішим з них є спосіб утворення такої характеристики з допомогою набору смугових або режекторних фільтрів. На (мал. 10(а,б)) зображений спосіб отримання гребінчастої характеристики затухання.

вих

мал. 10 а.

вх.

вих.

мал. 10 б.

3. Вплив навантаження на характеристики фільтрів

Вплив опору навантаження на характеристики фільтрів розглянемо на прикладі найпростішого ФНЧ. Коли фільтр навантажений на опір zн=z0, тобто не характеристичне, такий режим називається режимом узгодження.

мал. 11

В цьому випадку характеристика фільтра буде мати вигляд, показаний на мал. 12

мал. 12

Необхідно підкреслити, що такий вид характеристики фільтр буде мати лише тоді, коли він буде навантажений на опір, рівний характеристичному. Щоб вияснити можливе існування такого режиму, необхідно знайти характеристичний опір даного фільтра.

мал. 13

Користуючись теорією чотирьохполюсників можна написати для П-подібної схеми фільтра формулу, яка виражає залежність характеристичного опору від частоти

Характеристики

Тип файла
Документ
Размер
6,7 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее