49222 (597436), страница 3
Текст из файла (страница 3)
Для определения координат максимума этой функции нужно найти производную и приравнять ее к нулю.
Из условия находят: Pi e = 1,где е - основание натурального логарифма.
Таким образом, функция: (Pi log Pi) при Pi = 1/e = 0,37 имеет максимум: ., т.е координаты максимума (0,37; 0,531)
Энтропия Н - величина вещественная, неотрицательная и ограниченная, т.е. Н 0 (это свойство следует из того, что такими же качествами обладают все ее слагаемые Pi log 1/Pi).
Энтропия равна нулю, если сообщение известно заранее (в этом случае каждый элемент сообщения замещается некоторым знаком с вероятностью, равной единице, а вероятности остальных знаков равны нулю).
Энтропия максимальна, если все знаки алфавита равновероятны, т.е. Нmax = log m.
Таким образом, степень неопределенности источника информации зависит не только от числа состояний, но и от вероятностей этих состояний. При неравновероятных состояниях свобода выбора источника ограничивается, что должно приводить к уменьшению неопределенности. Если источник информации имеет, например, два возможных состояния с вероятностями 0,99 и 0,01, то неопределенность выбора у него значительно меньше, чем у источника, имеющего два равновероятных состояния. Действительно, в первом случае результат практически предрешен (реализация состояния, вероятность которого равна 0,99), а во втором случае неопределенность максимальна, поскольку никакого обоснованного предположения о результате выбора сделать нельзя. Ясно также, что весьма малое изменение вероятностей состояний вызывает соответственно незначительное изменение неопределенности выбора.
Пример3. Распределение знаков алфавита имеет вид р(х1) = 0,1 р(x2) = 0,1 р(x3) = 0,1 р(x4) = 0,7. Определить число знаков другого алфавита, у которого все знаки равновероятны, а энтропия такая же как и у заданного алфавита.
Особый интерес представляют бинарные сообщения, использующие алфавит из двух знаков: (0,1). При m = 2 сумма вероятностей знаков алфавита: Р1+Р2 = 1. Можно положить Р1 = Р, тогда Р2 = 1-Р.
Энтропию можно определить по формуле:
,
Энтропия бинарных сообщений достигает максимального значения, равного 1 биту, когда знаки алфавита сообщений равновероятны, т.е. при Р = 0,5, и ее график симметричен относительно этого значения.(рис.2.2).
Рис. 2.2. График зависимости энтропии Н двоичных сообщений (1) и ее составляющих (2,3): - (1 - Р) log (1 - P) и - P log P от Р.
Пример 4. Сравнить неопределенность, приходящуюся на букву источника информации (алфавита русского языка), характеризуемого ансамблем, представленным в таблице 2.2, с неопределенностью, которая была бы у того же источника при равновероятном использовании букв.
Таблица 2.2.
Буква | Вероятность | Буква | Вероятность | Буква | Вероятность | Буква | Вероятность |
а | 0,064 | й | 0,010 | т | 0,056 | ы | 0,016 |
б | 0,015 | к | 0,029 | у | 0,021 | э | 0,003 |
в | 0,039 | л | 0,036 | ф | 0,02 | ю | 0,007 |
г | 0,014 | м | 0,026 | х | 0,09 | я | 0,019 |
д | 0,026 | н | 0,056 | ц | 0,04 | пробел | 0,143 |
е,ё | 0,074 | о | 0,096 | ч | 0,013 | ||
ж | 0,008 | п | 0,024 | ш | 0,006 | ||
з | 0,015 | р | 0,041 | ш | 0,003 | ||
и | 0,064 | с | 0,047 | ъ,ь | 0,015 |
Решение. 1. При одинаковых вероятностях появления любой из всех m = 32 букв алфавита неопределенность, приходящуюся на одну букву, характеризует энтропия
H = log m = log 32 = 5 бит.
-
Энтропию источника, характеризуемого заданным табл. 2.2 ансамблем, находят по формуле:
-0,064 log 0,064 -0,015log0,015 - 0,143log0,143 4,43 бит.
Таким образом, неравномерность распределения вероятностей использования букв снижает энтропию источника с 5 до 4,42 бит
Пример 5. Заданы ансамбли Х и Y двух дискретных величин:
Таблица 2.3.
Случайные величины хi | 0,5 | 0,7 | 0,9 | 0,3 |
Вероятности их появления | 0,25 | 0,25 | 0,25 | 0,25 |
Таблица 2.4.
Случайные величины уj | 5 | 10 | 15 | 8 |
Вероятности их появления | 0,25 | 0,25 | 0,25 | 0,25 |
Сравнить их энтропии.
Решение. Энтропия не зависит от конкретных значений случайной величины. Так как вероятности их появления в обоих случаях одинаковы, то
Н(Х) = Н(Y) = - 4(0,25log0,25) = -4(1/4log1/4) =
= log 4 = 2 бит
2.2 Энтропия при непрерывном сообщении
В предыдущих параграфах была рассмотрена мера неопределенности выбора для дискретного источника информации. На практике в основном встречаются с источниками информации, множество возможных состояний которых составляет континуум. Такие источники называют непрерывными источниками информации.
Во многих случаях они преобразуются в дискретные посредством использования устройств дискретизации и квантования. Вместе с тем существует немало и таких систем, в которых информация передается и преобразуется непосредственно в форме непрерывных сигналов. Примерами могут служить системы телефонной связи и телевидения.
Оценка неопределенности выбора для непрерывного источника информации имеет определенную специфику. Во-первых, значения, реализуемые источником, математически отображаются случайной непрерывной величиной. Во-вторых, вероятности значений этой случайной величины не могут использоваться для оценки неопределенности, поскольку в данном случае вероятность любого конкретного значения равна нулю. Естественно, однако, связывать неопределенность выбора значения случайной непрерывной величины с плотностью распределения вероятностей этих значений. Учитывая, что для совокупности значений, относящихся к любому сколь угодно малому интервалу случайной непрерывной величины, вероятность конечна, попытаемся найти формулу для энтропии непрерывного источника информации, используя операции квантования и последующего предельного перехода при уменьшении кванта до нуля.
Для обобщения формулы Шеннона разобьем интервал возможных состояний случайной непрерывной величины Х на равные непересекающиеся отрезки х и рассмотрим множество дискретных состояний х1, x2, ... , xm с вероятностями Pi = p(xi)x (i = 1, 2, ... , m). Тогда энтропию можно вычислить по формуле:
В пределе при x 0 с учетом соотношения:
,
Получим .
Первое слагаемое в правой части соотношения имеет конечное значение, которое зависит только от закона распределения непрерывной случайной величины Х и не зависит от шага квантования. Оно имеет точно такую же структуру, как энтропия дискретного источника.
Поскольку для определения этой величины используется только функция плотности вероятности, т. е. дифференциальный закон распределения, она получила название относительной дифференциальной энтропии или просто дифференциальной энтропии непрерывного источника информации (непрерывного распределения случайной величины Х).
Первое слагаемое в этой сумме, называемое также приведенной энтропией, целиком определяет информативность сообщений, обусловленных статистикой состояний их элементов.
Величина logx зависит только от выбранного интервала x, определяющего точность квантования состояний, и при x =const она постоянна.
Энтропия и количество информации зависят от распределения плотности вероятностей р(х).
В теории информации большое значение имеет решение вопроса о том, при каком распределении обеспечивается максимальная энтропия Н(х).
Можно показать, что при заданной дисперсии:
,
наибольшей информативностью сообщение обладает только тогда, когда состояния его элементов распределены по нормальному закону:
Так как дисперсия определяет среднюю мощность сигнала, то отсюда следуют практически важные выводы.
Передача наибольшего количества информации при заданной мощности сигнала (или наиболее экономичная передача информации) достигается при такой обработке сигнала, которая приближает распределение плотности вероятности его элементов к нормальному распределению.
В то же время, обеспечивая нормальное распределение плотности вероятности элементам помехи, обеспечивают ее наибольшую “ информативность”, т.е наибольшее пагубное воздействие на прохождение сигнала. Найдем значение энтропии, когда состояния элементов источника сообщений распределены по нормальному закону:
.