47385 (597334), страница 2

Файл №597334 47385 (Компаратори слів, перетворювачі кодів та схеми контролю) 2 страница47385 (597334) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рис. 4. Перетворювач натурального двійкового коду у код Грея

а) б)

Рис. 5. УГП перетворювачів кодів : а – загальне позначення,
б – позначення трирозрядного перетворювача натурального коду у код Грея

Можливість виявлення помилок за наявності додаткових бітів обумовлена тим, що для передачі інформації використовуються не всі можливі комбінації n-розрядного двійкового коду, а лише деяка частина з них. Дозволені комбінації вважаються безпомилковими, інші є забороненими. Поява заборонених комбінацій розглядається як помилка. Слід уявляти, що можливі такі помилки, за яких одна дозволена комбінація переходить у іншу. У цьому випадку помилки не виявляються.

Найпростішим поширеним кодом, стійким до завад, який використовується у мікропроцесорній техніці, є код з контролем на парність. У цьому коді до інформаційних бітів праворуч додається один контрольний біт. Якщо кількість одиниць в інформаційних бітах є парною, то значення контрольного біта дорівнює 0, у протилежному випадку – 1. Отже, у будь-якому випадку кількість одиниць у повній послідовності (кодовому слові з контрольним бітом) є парною. Якщо при перевірці після передачі кількість одиниць є непарною, то це означає, що відбулася помилка. Код із контролем на парність дозволяє виявляти всі помилки непарної кратності (у одному біту кодового слова) і не дозволяє виявляти помилки парної кратності (у двох бітах кодового слова одночасно).

Неважко помітити, що алгоритм отримання додаткового контрольного біту для n-розрядного паралельного кодового слова співпадає з логічною функцією „виключне АБО” n аргументів.

Схема отримання контрольного біта Р також може бути реалізована на суматорах за модулем 2 (елементах „виключне АБО” на 2 входи). У цьому разі схема будується за багатоярусним принципом: спочатку попарно додаються значення окремих розрядів кодового слова, потім отримані результати також попарно додаються за допомогою суматорів за модулем 2 другого ярусу і т.д., наприклад:

Багатоярусні схеми на суматорах за модулем 2 часто називають схемами згортки. На рис. 6 зображена схема отримання двійкового коду з контролем на парність, де схема згортки позначена прямокутником з написом 2k+1.

Рис. 6. Схема отримання двійкового коду з контролем на парність

Очевидно, що схема, яка перевіряє на парність прийняті кодові слова (схема контролю на парність), також являє собою логічний елемент „виключне АБО” n + 1 аргументів (з урахуванням контрольного біта), або багатоярусну схему на суматорах за модулем 2, яку часто називають схемою згортки.

Висновок: аналізуючи схеми перетворювачів кодів та схем контролю, які були розглянути вище, неважко помітити, що в більшості з них використовуються суматори за модулем 2, або схеми згортки, побудовані на основі цих суматорів.

Додатковий матеріал для самостійного вивчення: (Тиртишніков О.І., Корж Ю.М. Обчислювальна техніка та мікропроцесори. Частина 2. Цифрові автомати: Навчальний посібник. – Полтава: ПВІЗ, 2006, с. 25 – 28.

Іншим поширеним кодом є код Хеммінга, що виявляє і виправляє одноразові помилки. Кожній з 2n-1 ненульових комбінацій n-розрядного кодового слова відповідає комбінація з n + k бітів. Значення контрольних бітів отримують в результаті додавання за модулем 2 значень бітів у деяких визначених інформаційних розрядах. Із загальної кількості 2n+k-1 можливих помилок код Хеммінга може виявити та виправити 2k-1 помилок.

Припустимо, що треба передати або обробити 15 різних двійкових повідомлень. Без кодування для цього достатньо чотирьох інформаційних бітів (n = 4). Потрібну кількість додаткових контрольних бітів обчислюють за формулою 2k-1 = n + k. Звідки визначають кількість перевірних розрядів та кількість одноразових помилок, які можуть бути виявлені та виправлені. У цьому випадку кількість додаткових розрядів k = 3, а кількість одноразових помилок – 2k-1 = 7.

Контрольні біти ki розташовують у послідовності інформаційних бітів uj на позиціях із номерами 2i-1, як показано у табл. 5.

Таблиця 5

Позиція

1

2

3

4

5

6

7

001

010

011

100

101

110

111

Біт

k1

k2

u1

k3

u2

u3

u4

Значення перевірних бітів ki обчислюється додаванням за модулем 2 значень бітів, у двійковому виразі номерів яких наявна одиниця в i-му розряді. Відповідно, для обчислення значення k1 потрібно додати за модулем 2 значення бітів із непарними номерами:

.

Для визначення k2 треба додати за модулем 2 біти, у двійковому виразі номерів яких наявна одиниця у другому розряді, тобто:

.

Контрольний біт k3 визначається додаванням за модулем 2 бітів, у двійковому виразі номерів яких наявна одиниця у третьому розряді:

.

Схема перетворювача чотирирозрядних кодових слів у код Хеммінга зображена на рис. 7.

Визначення та виправлення помилок здійснюється k перевірками. При кожній перевірці додаються за модулем 2 біти прийнятої послідовності інформаційних та контрольних розрядів, двійкові номера яких мають одиницю в першому, другому і так далі розрядах. Якщо під час передавання не було збою, то результати всіх перевірок дорівнюють нулю. Якщо збій відбувся, то хоча б одна перевірка не дорівнює нулю. У цьому випадку треба сформувати кодову комбінацію з результатів перевірок, який вкаже на розряд, де відбувся збій (він має назву синдром). Молодший розряд коду результатів перевірок формує перша перевірка, старший – остання. Інверсія біта в розряді з одержаним номером виправить помилку.

Рис. 7. Схема перетворювача чотирирозрядних кодових слів в код Хеммінга

Наприклад, необхідно сформувати код Хеммінга, що виявляє та виправляє одноразові помилки у послідовності:

1

1

0

0

u1

u2

u3

u4

Відповідно,

Послідовність, що закодована кодом Хеммінга, буде мати вигляд:

0

1

1

1

1

0

0

k1

k2

u1

k3

u2

u3

u4

Нехай після передачі відбувся збій в одному розряді і прийнята послідовність 0110100 (помилка в четвертому розряді – k3). Тоді перша та друга перевірки дадуть значення 0, а третя – 1:

Код 100, що створюють результати перевірок, вказує, що відбувся збій у четвертому розряді. Якщо проінвертувати четвертий розряд, то одержимо виправлену послідовність 0111100.

Із розглянутого прикладу видно, що схема пристрою контролю повинна містити такі складові частини: схеми згортки (елементи „виключне АБО”) відповідно кількості перевірок, що виконуються; дешифратор, який на основі отриманого синдрому керує інверсією помилкового розряду та елементів, що виконують саму інверсію. Така схема зображена на рис. 16 (схеми згортки позначені прямокутником з написом 2k + 1). У якості „керованих інверторів” у схемі використовуються суматори за модулем 2.

Вихідний код

k1k2u1k3u2u3u4

Рис. 16. Схема пристрою контролю

Характеристики

Тип файла
Документ
Размер
2,23 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6900
Авторов
на СтудИзбе
268
Средний доход
с одного платного файла
Обучение Подробнее