47121 (597321), страница 2
Текст из файла (страница 2)
Объектом информатики выступают автоматизированные, основанные на ЭВМ и телекоммуникационной технике, информационные системы различного класса и назначения. Рассматриваются все стороны их разработки, проектирования, создания, анализа и использования на практике.
Предмет информатики как науки составляют аппаратное и программное обеспечение средств вычислительной техники, средства взаимодействия аппаратного и программного обеспечения, средства взаимодействия человека с аппаратными и программными средствами.
Средства взаимодействия в информатике принято называть интерфейсом, поэтому средства взаимодействия аппаратного и программного обеспечения называют также программно-аппаратным интерфейсом, а средства взаимодействия человека с аппаратными и программными средствами – интерфейсом пользователя.
1. 2 Задачи, роль и место курса информатики в подготовке специалистов
Цели изучения дисциплины:
1. Подготовка выпускника к деятельности в территориальных органах и подразделениях связи специального назначения Службы специальной связи и информации ФСО РФ на инженерных и командных должностях на базе полученных в соответствии со специальностью, знаний, умений и навыков в области автоматизированных систем обработки информации и управления.
2. Развитие у подготавливаемых специалистов основ информационного мышления и культуры, адекватных современному уровню развития информационной науки и новым информационным технологиям.
3. Формирование знаний и умения использовать естественно-научные знания информатики и математики, необходимые для выполнения служебной деятельности в различных сферах развивающегося информационного общества: социально-правовой, информационной, обеспечения информационной безопасности личности, общества и государства, защиты конфиденциальной информации и сведений, составляющих государственную, коммерческую и другие виды тайны; постановки информационных задач, моделирования и анализа информации; осуществления дальнейшего профессионального самообразования в области информатики и математики.
Задачи изучения дисциплины:
-
Создание научных представлений об информатике как особом способе познания мира, об их месте и роли в общей системе социально-экономических, гуманитарных, естественнонаучных, общепрофессиональных и специальных дисциплин.
-
Развитие информационной культуры, в которой рассматриваются основные положения информатизации общества, понятия информации, ее свойств, характеристик, современных информационных технологий.
-
Ознакомление с научно-методологической, методической, понятийной основами информатики, а также с особенностями использования в изучении и исследовании правовых учений, процессов, общественных отношений.
-
Изучение концептуальных взглядов, направлений, проблем, перспектив развития информатики.
-
Изучение современных принципов, методов и средств сбора, обработки, передачи, хранения и переработки информации, в том числе правовой.
-
Изучение методических и практических проблем технологии автоматизации видов и сфер государственно-правовой деятельности и связанных с ними процессов обработки информации.
7. Приобретение необходимых знаний в области алгоритмизации и программирования задач профессиональной деятельности.
8. Получение знаний устройства и основных принципов работы персонального компьютера как основного инструмента по обработке информации.
9. Овладение умениями использования и работы с современными информационными технологиями, а также со стандартным и специализированным программным обеспечением:
-
привитие умения эффективного использования персональных компьютеров в правореализационной и правотворческой деятельности;
-
формирование адаптивности специалиста к непрерывному изучению основных видов и средств представления и обработки информации;
-
приобретение знаний об организации внедрения, методах и способах использования новых информационных технологий для повышения эффективности государственной деятельности;
-
изучение базовых понятий, положений, современных проблем и направлений обеспечения информационной безопасности личности, общества и государства и информационных систем;
-
привитие навыков информационного мышления при решении задач оперативно-служебной деятельности;
-
раскрытие содержания общих понятий о численной реализации задач с целевыми функциями на персональных компьютерах.
В результате изучения дисциплины "Информатика" специалисты должны соответствовать государственным требованиям к минимуму содержания и уровню подготовки специалиста, а также дополнениям к государственным требованиям к минимуму содержания и уровню подготовки выпускника Академии ФСО России.
В результате изучения дисциплины "Информатика" курсанты должны
знать:
-
характеристики и архитектуру основных классов ЭВМ;
-
структуру, технические характеристики и особенности построения основных устройств современных ЭВМ;
-
принципы алгоритмизации, технологию разработки программ решения информационных и вычислительных задач с помощью ЭВМ;
-
один из языков программирования высокого уровня (Turbo Pascal);
-
назначение и возможности текстовых и табличных процессоров, интегрированных программных средств;
-
назначение, принцип построения и возможности систем управления базами данных (СУБД);
-
назначение и возможности операционных систем и системного программирования;
уметь:
-
работать с операционной системой (ОС) и ее оболочками;
-
составлять программу обработки информации;
-
формализовать прикладную задачу и разработать алгоритм ее решения на ЭВМ;
-
работать с текстовыми и табличными процессорами и СУБД;
-
работать с пакетами прикладных программ специального назначения;
-
организовывать грамотную эксплуатацию вычислительной техники;
иметь представление:
-
о современной технологии программирования сложных систем обработки информации;
-
способах защиты информации, обрабатываемой на ЭВМ, от несанкционированного доступа, копирования, уничтожения, а также основных способах борьбы с компьютерными вирусами.
Роль информатики в развитии общества чрезвычайно велика. С ней связано начало революции в области накопления, передачи и обработки информации. Эта революция, следующая за революциями в области овладения веществом и энергией, затрагивает и коренным образом преобразует не только сферу материального производства, но и интеллектуальную, духовную сферы жизни.
Рост производства компьютерной техники, развитие информационных сетей, создание новых информационных технологий приводят к значительным изменениям во всех сферах общества: производстве, науке, образовании, медицине и т. д.
1.3 Информатизация общества
В истории развития цивилизации произошло несколько информационных революций – преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Их следствием явилось приобретение человеческим обществом нового качества.
Первая революция произошла с изобретением письменности, что привело к гигантскому качественному и количественному скачку. Появилась возможность передачи знаний от поколения к поколению.
Вторая (середина XVI в.) вызвана изобретением книгопечатания, радикально изменившим индустриальное общество, культуру, организацию деятельности.
Третья (конец XIX в.) обусловлена изобретением электричества, благодаря чему появились телеграф, телефон, радио (1895 г.), позволяющие оперативно передавать информацию.
Четвертая (70-е гг. XX в.) связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации). Этот период характеризуют три фундаментальные инновации:
-
Переход от механических и электрических средств преобразования информации к электронным.
-
Миниатюризация всех узлов, устройств, приборов, машин.
-
Создание программно-управляемых устройств и процессов.
Для создания более целостного представления об этом периоде целесообразно познакомиться с приведенной ниже справкой о смене поколений ЭВМ и сопоставить эти сведения с этапами развития в области обработки и передачи информации (табл. 1.1).
История зарождения и развития вычислительной техники довольно коротка. Ее принято исчислять с 1833 г., когда английский математик Чарльз Беббидж впервые проникся идеей создания механического "вычислительного помощника", в котором используется принцип программного управления. Потребовалось более 100 лет, чтобы эта идея, обогащенная американским математиком Дж. фон Нейманом в 1945–1947 гг., положила начало эры ЭВМ, базирующихся на появившихся к тому времени электронных лампах.
Первая быстродействующая ЭВМ ЭНИАК, созданная американскими специалистами в Пенсильванском университете, состояла из 18 тыс. электронных ламп, потребляла более 100 кВт электроэнергии, весила 30 т и занимала комнату длиной 30 м. Машина была специализированной и предназначалась для решения дифференциальных уравнений в задачах расчета траекторий. С момента создания в 1947 г. первой программно-управляемой цифровой ЭВМ начался бурный прогресс вычислительной техники.
Таблица 1.1Справка о смене поколений ЭВМ
| Поко-ление | Время | Элементная база | Характеристика |
| 1-е | Начало 50-х гг. | Электронные лампы | ЭВМ отличались большими габаритами, высоким потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах |
| 2-е | С конца 50-х гг. | Полупроводни-ковые элементы | Улучшились все технические характеристики. Для программирования использовались алгоритмические языки |
| 3-е | Начало 60-х гг. | Интегральные схемы, многослойный печатный монтаж | Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности |
| 4-е | С сере-дины 70-х гг. | Микропроцессоры, большие интегральные схемы (БИС) | Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направление развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ |
| 5-е | С сере-дины 80-х гг. | Разработка интеллектуальных компьютеров | Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных технологий |
Совершенствование элементной базы привело к существенному уменьшению размеров, стоимости и энергопотребления, а также к повышению быстродействия и надежности ЭВМ. Эволюция архитектурных решений способствовала успешному росту последних двух показателей. Большие успехи были достигнуты также в области периферийного оборудования, что существенно облегчило общение пользователей ЭВМ.
В 1982 г. Х. Тунг и А. Гупта провели сравнение, иллюстрирующее высокие темпы развития средств вычислительной техники (СВТ): "Если бы за последние 25 лет авиационная промышленность развивалась столь же стремительно, как и вычислительная техника, то "Боинг-767" можно было бы приобрести сегодня за 500 долл. и облететь на нем земной шар за 20 минут, израсходовав при этом 19 литров горючего". С тех пор скорость вычислений возросла в 20 раз, а размеры и энергопотребление ЭВМ стали в 10 000 раз меньше, чем у машин сравниваемой производительности 25-летней давности. В последние годы отмеченные тенденции не только сохранились, но и усилились. Исходя из этого вполне закономерным явилось появление микропроцессоров (МП) и создание на их основе микроЭВМ, венцом которых стали ПЭВМ. Первая персональная машина была сконструирована американской фирмой MITS в 1975 г. и названа Altair 8800. По сегодняшним меркам она, ощетинившаяся индикаторными лампочками и переключателями, выглядит довольно странно. Цена ее составляла около 6 000 долл. Эта машина давно уже не выпускается.















