183554 (596676), страница 3
Текст из файла (страница 3)
L(A)=(5-1)2+(0-3)2=25.
Ответ: Минимум, равный 0, достигается в точке (1;3),
Максимум, равный 25, - в точке А(5;0).
4. Предприниматель решил выделить на расширение своего дела 150 тыс.руб. известно, что если на приобретение нового оборудования затратить х тыс. руб., а на зарплату вновь принятых работников у тыс. руб., то прирост объёма продукции составит Q=0.001x0.6·y0.4 . Как следует распределить выделенные денежные ресурсы, чтобы прирост объёма продукции был максимальным.
Решение: Целевая функция имеет вид 0.001x0.6·y0.4 →max при ограничениях x+y≤150,
.
ОДР – треугольник. Л инии уровня будут иметь вид 0.001x0.6·y0.4 =С. Выразив отсюда у, получим у=
. Т.к. максимум достигается в точке касания линии уровня с ОДР, то условие касания имеет вид
=-1. Найдя производную, получаем
=-1. Выразив х, получим х=
. у=
=
.
Ответ: Факторы х и у следует распределить в отношении 2:3.
5.Предприятие выпускает изделия А и Б, при изготовлении которых используется сырьё S1 и S2. Известны запасы bi (i=1,2) сырья, нормы его расхода на единицу изделия aij (j=1,2), оптовые цены pj на изделия и их плановая себестоимость с . Как только объём выпускаемой продукции перестаёт соответствовать оптимальному размеру предприятия, дальнейшее увеличение выпуска хj ведёт к повышению себестоимости продукции b, в первом приближении фактическая себестоимость сj описывается функцией сj= с
+ с
хj, где сj – некоторая постоянная. Все числовые данные приведены в таблице
b1 | b2 | a11 | a12 | a21 | a22 | p1 | p2 | с | с | с | с |
90 | 88 | 13 | 6 | 8 | 11 | 12 | 10 | 7 | 8 | 0.2 | 0.2 |
Найти план выпуска изделий, обеспечивающий предприятию наивысшую прибыль в условиях нарушения баланса между объёмом и оптимальным размером предприятия.
Решение: Составим математическую модель задачи.
Пусть Z – прибыль, получаемая предприятием после реализации х1 выпущенных изделий А и х2 изделий Б.
Z=( 12-( 7+ 0,2 х1)) х1+( 10-( 8+ 0,2 х2)) х2 →max,
п ри ограничениях 13 х1+ 6 х2≤ 90,
8 х1+ 11 х2≤88,
Преобразуя целевую функцию, получим:
Z=5х1-0,2х +2 х2-0,2х
→max
ОДР – многоугольник ОАВD. Для построения линий уровня функции, приведём функцию к следующему виду:
(х1-12,5)2+(х2-5)2=181,25-5Z .
Линиями уровня будут окружности с центром в точке О1(12,5; 5) и радиуса . Окружность наибольшего радиуса будет проходить через точку М, находящейся на пересечении прямой ВD и прямой O1М, перпендикулярной к BD. Найдём координаты точки М.
13х1+ 6х2=90
х2-5=6/13(х1-12,5). Решив систему, получим, М(6;2).
Z(М)=30-7,2-2,8+4=26.
Ответ: Для получения предприятием максимальной прибыли, составляющей 26 ден.ед., следует выпустить 6 ед. изделия А и 2 ед. изделия Б.
5) Задача на условный экстремум.
Если система ограничений (3.1) задана в виде равенств, то это задача на условный экстремум. В случае функции n независимых переменных (x1,x2, …,хn) задача на условный экстремум формулируется следующим образом:
L=f(x1,x2, …,хn )→max (min)
при условиях: gi(x1,x2, …,хn)=0, i= . (m<n).
В конце XVIII века Лагранж предложил остроумный метод решения задачи на условный экстремум. Суть метода Лагранжа состоит в построении функции L(x1,x2, …,хn)= f(x1,x2, …,хn)+ gi(x1,x2, …,хn), где λi неизвестные постоянные, и нахождении экстремума функции L.
Верна следующая теорема: если точка ( ) является точкой условного экстремума функции f(x1,x2, …,хn) при условии g(x1,x2, …,хn)=0, то существует значение λi такие, что точка (
) является точкой экстремума функции L(
).
Рассмотрим метод Лагранжа для функции двух переменных.
L(x1,x2,λ)= f(x1,x2)+λ g(x1,x2)
Таким образом, для нахождения условного экстремума функции f(x1,x2) при условии g(x1,x2)=0 требуется найти решение системы
L
=f
(x1,x2)+λg
(x1,x2)=0, (3.18)
L =f
(x1, x2) +λg
(x1, x2) =0,
L = g(x1, x2) =0. [4]
Есть и достаточные условия, при выполнении которых решение (x1,x2,λ) системы (3.18) определяет точку, в которой функция f достигает экстремума, для этого нужно вычислить значения и составить определитель
=-
.
Если <0, то функция имеет в точке (
) условный максимум, если
>0 – то условный минимум.
Решим задачу методом множителей Лагранжа.
Общие издержки производства заданы функцией Т=0,5х2+0,6ху+0,4у2+ +700х+600у+2000, где х и у соответственно количество товаров А и В. Общее количество произведённой продукции должно быть равно 500 единиц. Сколько единиц товара А и В нужно производить, чтобы издержки на их изготовление были минимальными?
Решение: составим функцию Лагранжа.
L(x, y, λ) =0,5х2+0,6ху+0,4у2+ +700х+600у+2000+λ(х+у-500). Приравнивая к нулю её частные производные, получим
х +0,6у+700+ λ=0,
0,6х+0,8у+600+ λ=0,
х+у-500=0.
Решив систему, найдём (0, 500, -1000).
Воспользуемся достаточным условием для определения найденного значения L (x0,y0)=1, L
(x0,y0)=0.8, L
(x0,y0)=0.6. Функция g= х+у-500. g
=1, g
=1.
=-(0·L
·L
+ g
·L
· g
+ g
·g
·L
- g
·L
·g
-0·L
·L
- g
· g
·L
)=0,6>0
Значит, в точке (0;500) функция L имеет условный минимум.
Ответ: Выгодно производить только 500 ед. товара В, а товар А не производить.
Наиболее простым способом нахождения условного экстремума функции двух переменных является сведение задачи к отысканию экстремума функции одной переменной. Пусть уравнение g(x1,x2)=0 удалось разрешить относительно одной из переменных, например, выразить х2 через х1: х2=φ(х1). Подставив полученное выражение в функцию, получим y=f(x1,x2)= y=f(x1, φ(х1)), т.е. функцию одной переменной. Её экстремум и будет условным экстремумом функции y=f(x1,x2).
Проиллюстрируем данный метод на конкретной задаче.
Фирма реализует автомобили двумя способами: через розничную и оптовую торговлю. При реализации х1 автомобилей в розницу расходы на реализацию составляют (4 х1+х ) у. е., а при продаже х2 автомобилей оптом – х
у. е. Найти оптимальный способ реализации автомобилей, минимизирующий суммарные расходы, если общее число, предназначенных для продажи автомобилей составляет 200шт.
Решение: Составим функцию L(х1,х2)=4х1+х +х
и будем находить её минимум. Т.к. для продажи предназначено 200 автомобилей, то х1+х2=200. Разрешим данной уравнение относительно переменной х2: х2=200-х1. Подставим полученное выражение в функцию L, получим L=4 х1+ х
+ (200- х1)2=2х
--396 х1+40000, х1
0.
Найдём экстремум данной функции.
L
=4 х1-396.
Приравняв её к нулю, получим х1=99.
Ответ: оптимальный способ реализации автомобилей – это 99 автомобилей в розницу и 101 автомобиль оптом (х2=200-99). Расходы составят 20398 р.
В экономических задачах, в которых отыскивается оптимум функции f =(x1,x2, …,хn), где n 2, полагают, что найденное единственное решение, удовлетворяющее необходимому условию экстремума, является оптимальным.
4. Задача потребительского выбора.
1) Функция полезности. Бюджетное ограничение. Формулировка задачи потребительского выбора.
Будем считать, что потребитель располагает доходом Q, который он полностью тратит на приобретение благ (продуктов) Учитывая структуру цен, доход и собственные предпочтения, потребитель приобретает определённое количество благ, и математическая модель такого его поведения называется моделью потребительского выбора.
В некоторых задачах выделяют один продукт, а вторым считают все остальные. Поэтому сначала рассмотрим модель с двумя видами продуктов. Потребительский набор – это вектор (x1,x2), координата x1 которого равна количеству единиц первого продукта, а координата x2 равна количеству единиц второго продукта.
Выбор потребителя характеризуется отношением предпочтения, суть которого состоит в следующем. Считается, что потребитель про каждые два набора может сказать, что либо один из них более желателен, чем другой, либо потребитель не видит между ними разницы. Отношение предпочтения транзитивно, т.е. если набор А=(а1,а2) предпочтительнее набора B=(b1,b2), а набор B=(b1,b2) предпочтительнее набора С=(с1,с2), то набор А=(а1,а2) предпочтительнее набора С=(с1,с2).
На множестве потребительских наборов (x1,x2) определена функция u(x1,x2) (называемая функцией полезности потребителя), значение u(x1,x2) которой на потребительском наборе (x1,x2)равно потребительской оценке индивидуума для этого набора. Потребительскую оценку u(x1,x2) набора (x1,x2) принято называть уровнем (или степенью) удовлетворения потребительского индивидуума, если он приобретает или потребляет данный набор (x1,x2). Каждый потребитель имеет, вообще говоря, свою функцию полезности. Если набор А предпочтительнее набора В, то u(А)>u(В).
Функция полезности удовлетворяет следующим свойствам:
-
Возрастание потребления одного продукта при постоянном потреблении другого продукта ведёт к росту потребительской оценки, т.е. если x
>x
, то u(x
,x2)> u(x
,x2);
если x >x
, то u(x1, x
)> u(x1, x
).
Иначе говоря, u (x1,x2)=u
>0, u
(x1,x2)=u
>0.
Первые частные производные u и u
называются предельными полезностями первого и второго продуктов соответственно.
-
Предельная полезность каждого продукта уменьшается, если объём его потребления растёт (закон убывания предельной полезности). Из свойства второй производной следует, что u
(x1,x2)<0, u
(x1,x2)<0.
-
Предельная полезность каждого продукта увеличивается, если растёт количество другого продукта. В этом случае продукт, количество которого фиксировано, оказывается относительно дефицитным. Если блага могут замещать друг друга в потреблении, свойство не выполняется. u
(x1,x2)=u12>0, u
(x1,x2)=u21>0.
Линия, соединяющая потребительские наборы (x1,x2), имеющие один и тот же уровень удовлетворения потребностей называется линией безразличия. Линия безразличия есть не что иное, как линия уровня функции полезности. Множество линий безразличия называется картой линий безразличия. Линии безразличия, соответствующие разным уровням удовлетворения потребностей не пересекаются и не касаются. Чем выше и правее расположена линия безразличия, тем большему уровню удовлетворения потребностей она соответствует. Условия 1-3 означают, что линия безразличия убывает и является выпуклой вниз.
Задача потребительского выбора заключается в выборе такого потребительского набора (х , х
), который максимизирует его функцию полезности при заданном бюджетном ограничении.