169254 (595731), страница 2
Текст из файла (страница 2)
(5)
где с — удельная плотность воды, кг/м3;
W = pW’ — массовый расход воды, кг/с;
— удельная плотность воды, кг/м3;
W’— объемный расход воды, м3/с;
t — разница температур горячей и охлажденной воды, °С;
Т — рассматриваемый период, сут;
R — приток теплоты от солнечной радиации, Дж.
Процессы, происходящие при испарительном охлаждении, более сложные, чем теплообмен через твердую стенку. Последний имеет место в охладителях, охлаждение в которых происходит без контакта охлаждаемой воды с атмосферным воздухом — через стены теплообменников (радиаторов). Такой теплообмен называется конвективным. Он происходит при одновременном действии конвекции и теплопроводности. Конвективный теплообмен зависит от разнообразных факторов, в том числе: режима движения жидкости и воздуха, свободного или принудительного их движения, плотности, вязкости, коэффициента теплопроводности и температуропроводности жидкости и воздуха, формы и размера участвующей в конвективном теплообмене поверхности.
Удельное количество теплоты, переданной через стенку радиатора, определяется формулой Ньютона
(6)
где qр — удельное количество теплоты, кДж/(м2/ч);
р — общий коэффициент теплопередачи от воды к воздуху через стенку радиатора, кДж/(м2ч°С)
t — температура воды, проходящей через радиатор, °С;
— температура воздуха, обтекающего радиатор, °С.
Коэффициент р определяют по экспериментальным данным [4].
1.5. Требования к качеству охлаждающей воды оборотных систем водоснабжения
Требования к качеству охлаждающей воды определяются условиями ее использования в конкретных технологических схемах с учетом специфики производства. Тем не менее, все они сводятся к обеспечению высокоэффективной работы теплообменного оборудования, инженерных сооружений и коммуникаций, входящих в состав оборотного комплекса. Для успешной реализации этой задачи необходимо осуществлять проведение таких водных режимов, при которых на поверхности охлаждающих элементов и в самой системе практически не должно возникать активных коррозионных процессов и образования каких-либо солевых, механических и биологических отложений. В противном случае нарушаются нормальные условия теплопередачи, вызывающие снижение производительности основных технологических потоков и оборудования, а также качества вырабатываемой продукции; увеличиваются энергетические затраты циркуляционных насосных станций на преодоление дополнительных гидравлических сопротивлений в охлаждающих контурах; резко ухудшаются эксплуатационные характеристики оборотных систем; происходит разрушение конструкционных материалов.
Водный режим оборотных систем существенно отличается от режима прямоточных систем. Многократный нагрев оборотной воды и ее последующее охлаждение в градирнях и брызгальных бассейнах приводит к потерям равновесной углекислоты и отложению на поверхности теплообменников и холодильников главным образом кальциевых карбонатных отложений в соответствии с реакцией
Растворимость карбоната магния значительно больше, чем карбоната кальция, и поэтому MgCO3 входит в состав накипи в незначительном количестве в результате соосаждения с СаСО3. Однако при обработке добавочной воды известью с целью ее умягчения при значениях рН > 10 в результате гидролиза образуется малорастворимое соединение — гидроокись магния:
Природные воды, используемые в схемах технического водоснабжения, в которых не происходит выпадения солей карбонатной жесткости при температуре 40-60°С принято называть термостабильными. Для оценки термостабильности оборотной воды применяют шестибальную шкалу.
Практически карбонатная жесткость термостабильных вод не превосходит 2—3 мгэкв/л для оборотного водоснабжения и 4 мгэкв/л — для прямоточного.
Ограниченно термостабильные — природные воды, вызывающие карбонатные отложения только по мере накопления солей кальция в результате упаривания, имеют карбонатную жесткость не более 4 мгэкв/л.
Нетермостабильные — воды с карбонатной жесткостью свыше 4 мгэкв/л, у которых при относительно небольшом нагревании сразу же наблюдается выпадение СаСО3.
При работе оборотных систем с ограниченными добавками подпиточной воды, а, следовательно, при больших коэффициентах концентрирования солей содержание сульфата кальция достигает предела растворимости в циркуляционной воде, и он в зависимости от температуры воды и наличия в ней определенных примесей может выпадать из раствора в виде дигидрата CaSO42H2O и ангидрита CaSO4.
Скорость отложения карбоната кальция и других солей не должна превышать соответствующих пределов, поэтому требуется ограничить карбонатную жесткость и содержание сульфатов в виде расходуемой на подпитку охлаждающих оборотных систем. Кроме того, в оборотной и добавочной воде лимитируется концентрация взвешенных веществ, так как взвешенные вещества могут формировать в теплообменниках слой отложений, снижая, таким образом, коэффициент теплопередачи. При скорости движения жидкости 1 м/с и концентрациях грубодиспергированных примесей в оборотной воде 150мг/л и 1000 мг/л коэффициент теплопередачи снижается соответственно на 20 и 35 %. В свою очередь, увеличение скорости движения воды в трубках теплообменных аппаратов приводит к уменьшению интенсивности образования механических отложений. По некоторым данным, минимальная самоочищающая скорость движения жидкости, обеспечивающая вынос и транспортирование механических примесей (песка, накипи и других взвесей) крупностью 0,1-4мм из охлаждаемых элементов, составляет 0,01-0,5м/с. При наличии в оборотной воде окалины скорость циркуляционного потока должна быть не менее 0,8-1 м/с.
Источником загрязнений оборотной воды взвешенными веществами являются неосветленные воды поверхностных водоемов, вторичные продукты деструкции коррозионных и карбонатных отложений, биообрастаний, а также пыль минерального и органического происхождения, проникающая в охладители из атмосферного воздуха. Концентрация пыли в воздухе зависит от регионального фактора, степени загрязненности воздуха выбросами промышленных предприятий, почвенно-климатических условий, скорости ветра и т д. Концентрацию взвешенных веществ, вносимых в оборотную воду из воздуха, возможно, прогнозировать исходя из формулы
(7)
где С — прирост концентрации взвешенных веществ в оборотной воде при прохождении ее через градирню, г/м3,
Своз — запыленность атмосферного воздуха, мг/м3;
К — эмпирический коэффициент, изменяющийся в пределах 0,93—1,45 при плотности орошения от 10 до 6 м3/(м2ч).
Взвешенные вещества, например, такие, как песок, осаждаются в пазухах холодильников, забивают трубную систему теплообменников, отлагаются на отдельных участках коммуникаций, а мелкодисперсные включения, входящие в состав карбонатных и сульфатных отложений, вызывают повышение их прочностных характеристик.
Итак, допустимая концентрация взвешенных веществ в циркуляционной воде зависит от гидравлической крупности частиц и от скорости движения воды в теплообменных аппаратах. Исходя из требований по содержанию взвешенных веществ, предъявляемых к качеству оборотной воды, можно определить их максимально допустимую концентрацию в подпиточной воде и таким образом установить оптимальное количество механических примесей, подлежащих выводу из системы.
Накопление взвешенных веществ в холодильниках и коммуникациях наблюдается также при развитии биологических обрастаний, которые аккумулируют механические примеси, находящиеся в оборотной воде.
В состав биологических обрастаний входят разнообразные бактерии, водоросли, грибы, простейшие и более сложные организмы животного происхождения, принадлежащие к различным систематическим группам. На развитие биоценоза существенное влияние оказывают физико-химические и бактериологические показатели качества воды источников водоснабжения, погодно-климатические условия, сезонность, характер производства, технологическая схема охлаждения и обработки оборотной воды и т. д. С увеличением содержания в оборотной воде органических соединений, растворенного кислорода, а также биогенных элементов интенсивность биообрастаний резко возрастает.
В закрытых теплообменных аппаратах и коммуникациях в биоценоз обрастаний входят слизеобразующие и нитчатые формы, а также серо- и железобактерии.
К серобактериям относятся бесцветные нитчатые, крупные овальные и круглые бактерии, спириллы, для развития которых необходимы сероводород и кислород. Серобактерии в процессе жизнедеятельности окисляют H2S до S и при недостатке сероводорода выделяют серную кислоту, которая вызывает сульфатную коррозию, приводящую к разрушению деревянных и железобетонных конструкций.
Железобактерии извлекают из воды растворенное закисное железо и окисляют его до образования малорастворимого гидрата железа, забивающего трубопроводы. Вид железобактерий, преобладающих в системах оборотного водоснабжения, в большей степени зависит от содержания в воде органических веществ. При перманганатной окисляемости до 5—7 мг/л и значениях рН, близких к нейтральному в железистых водах, в основном развиваются одноклеточные железобактерии — галлионелла. При окисляемости порядка 17 мг/л в обрастаниях доминирующее место принадлежит нитчатым бактериям — лептотрикс. При наличии в воде безазотистых органических веществ основную массу биообрастаний составляет кладотрикс.
Роль железобактерий в биокоррозии металлов окончательно не изучена, тем не менее под обрастаниями железобактерий на поверхности металла встречаются каверны диаметром до 15 мм и глубиной до 7 мм.
В анаэробных условиях, имеющих место в плотных густых обрастаниях, развиваются сульфатредуцирующие бактерии. Сульфатвосстанавливающие бактерии окисляют органические вещества кислородом сульфатов и восстанавливаемая при этом сера (до H2S) превращается в малорастворимые сульфиды железа. Отлагающиеся на внутренней поверхности трубопроводов характерные черные хлопья разносятся потоком циркуляционной воды по всему тракту.
Аналогичная ситуация складывается при изменении условий существования либо направленном воздействии приводящих к гибели и отмиранию биообрастаний, вследствие чего также происходит образование сероводорода и усиление электрохимической коррозии металла.
При развитии обрастаний из моллюсков, ракообразных и других организмов, строящих известковые раковины, возможно отложение карбонатов на стенках труб и внутри холодильников.
В теплообменных аппаратах открытого типа и охладителях в формировании биоценоза принимают участие бактерии, зеленые и сине-зеленые водоросли, простейшие одноклеточные организмы, черви, коловратки и грибы. Последние вместе с илообразующими бактериями разрушают деревянные конструкции градирен.
Серьезные помехи при эксплуатации открытых систем оборотного водоснабжения создают водоросли. Они оказывают значительное влияние на химический состав оборотной воды, так как в процессе фотосинтеза способны поглощать растворенную в воде углекислоту и выделять кислород. В связи с этим в охлаждающих системах в течение суток наблюдаются циклические колебания рН, стабильности и коррозионной активности оборотной воды. Кроме того, водоросли могут являться питательной средой для других представителей биоценоза, стимулируя, таким образом, их дальнейшее развитие и рост. При обрастании водорослями оросителей и водоуловителей охлаждающая способность градирен снижается более чем на 15 %.
Зарастание охлаждающих водоемов растительностью приводит к сокращению поверхности испарения и повышению температуры оборотной воды, поступающей в теплообменники.
Таким образом, развивающиеся на теплообменных поверхностях аппаратов, в коммуникациях и охладителях биологические обрастания снижают эффективность работы оборотных систем технического водоснабжения, вызывают биологическую коррозию металлов, оказывают разрушающее воздействие на деревянные и железобетонные конструкции, сокращая срок их эксплуатации. Поэтому величина скорости роста биологических обрастаний теплообменных аппаратов так же, как и других сооружений оборотных систем, должна быть ограничена допустимой величиной. Для удовлетворения этих требований необходимо лимитировать содержание органических веществ и биогенных соединений, как в оборотной, так и в подпитывающей воде.
Охлаждающая вода не должна вызывать коррозию конструкционных материалов трубопроводов, теплообменников и отдельных сооружений, элементов градирен, выполненных из углеродистых сталей других материалов.