168690 (595687), страница 3
Текст из файла (страница 3)
Поэтому заслуживает внимания поиск для водоочистки новых эффективных реагентов. Поскольку коллоидные примеси в природных и сточных водах, а также частицы большинства суспензий заряжены отрицательно, то для их очистки целесообразно применение катионных флокулянтов.
Флокулирующие свойства анионного (А) и катионного флокулянтов (К) изучены при очистке воды (концентрация дисперсной фазы 2,7%), отобранной из отстойников водопроводной станции [35]. Флокулянтом А являлся сополимер АА с Na-АК, а флокулянтом К – сополимер АА с гидрохлоридом диметиламиноэтилметакрилата (ГХ ДМАЭМА). Количественной характеристикой флокулирующего эффекта служил параметр
D = (V – V0) / V0 ,
где V и V0 – соответственно скорости осаждения дисперсной фазы в воде (определяли при седиментации в цилиндрах) в присутствии и в отсутствие флокулянта.
Установлено увеличение значений D с повышением концентрации флокулянтов А и К (СП). При близких значениях ММ и содержания ионогенных звеньев в макромолекулах значения D возрастали при замене флокулянта К на А. Это следствие более эффективной адсорбции отрицательно заряженных макромолекул флокулянта А на частицах дисперсной фазы по сравнению с положительно заряженными макромолекулами флокулянта К. Увеличение концентрации дисперсной фазы в воде (СД) понижало величину D по причине уменьшения отношения СП/ СД при СП = const.
При добавлении в воду поверхностно-активного вещества (ОП-10) значения D увеличиваются более существенно для флокулянта К, чем для флокулянта А. Очевидно, молекулы ОП-10, адсорбируясь на дисперсных частицах, способствуют локальной адсорбции макромолекул флокулянта К. Для флокулянта А отмечено уменьшение (в присутствии ОП-10) среднеквадратичных размеров макромолекулярных клубков в растворе (r2)1/2, которое уменьшало величину D.
На водоочистной станции г. Кемерово [36] проанализированы причины повышения содержания остаточного алюминия в питьевой воде, и для снижения этого показателя предложена замена реагентов – СА на гидроксосульфат алюминия (ГСА) и аммиачного ПАА на низкомолекулярный катионный флокулянт ВПК-402 (полидиметилдиаллиламмонийхлорид), выпускаемый ПО «Каустик» г. Стерлитамак. Опыты проводили на пилотной установке фирмы Preussag Noell при температуре воды 200 С. Были проанализированы два фильтроцикла при тех же дозах реагентов, что и на очистных сооружениях. На рис. 1.2 приведена зависимость мутности воды и концентрации остаточного алюминия в фильтрованной воде от времени для фильтроциклов по очистке р. Томи при использовании ГСА (2 мг·л–1 Al2O3) с ВПК-402 (0,2 мг·л–1), а также СА с ПАА в тех же дозах.
Рис. 1.2 - Зависимость мутности воды N (мг·л–1) (1-3) и концентрация остаточного алюминия в фильтрованной воде с Al (мг·л–1) (4) от времени t (ч) для фильтроциклов по очистке р. Томи на пилотной установке фирмы Preussag Noell, а - для гидроксосульфата алюминия (2 мг·л–1 Al2O3) и ВПК-402 (0.2 мг·л–1); б - для сульфата алюминия (2 мг·л-1 Al2O3) и ПАА (0,2 мг·л–1). Вода: 1 - исходная, 2 – осветлённая, 3 – фильтрованная
Фильтроцикл на пилотной установке с применением СА и ПАА хорошо моделировал работу очистных сооружений. Мутность воды после отстойника не отличалась от исходной, а после фильтров – сохранялась на уровне 2 мг·л–1, что свидетельствует о неэффективной работе установки. При применении ГСА и ВПК-402 обеспечивалась лучшая работа отстойника и качество фильтрованной воды соответствовало требованиям нормативов по мутности. Содержание остаточного алюминия не превышало 0,1 мг·л–1, тогда как при использовании СА с аммиачным ПАА его величина равнялась 0,2 мг·л–1.
В работе [37] приведены результаты очистки воды р. Дон на водопроводной станции г. Ростова-на-Дону с использованием катионного флокулянта ВПК-402, который применяли как единственный реагент с марта 1994 г. При введении флокулянта в камеры хлопьеобразования осветление воды в отстойниках было слабым, а мутность очищенной воды намного превышала нормы качества питьевой воды. Поэтому флокулянт стали вводить во всасывающие линии насосов на промежуточной насосной станции подкачки, расположенной в 3 км от очистных сооружений. При этом взаимодействие флокулянта с коллоидными загрязнениями в воде проходило уже в трубах и повышало мутность очищаемой воды по сравнению с речной водой, что способствовало последующему эффективному осветлению воды в отстойниках. В табл. 1.6 приведены результаты осветления воды коагулянтом (1993 г) и флокулянтом (1995 г), а в табл. 1.7 сведены показатели качества водоочистки.
Согласно данным табл. 1.6 и 1.7, флокулянт ВПК-402 по сравнению с коагулянтом СА обеспечивал более глубокий и устойчивый в течение всего года эффект осветления воды в отстойниках и фильтрах. Дозирование флокулянта ВПК-402 в воду без разбавления позволило упростить и удешевить конструкцию реагентного хозяйства и его эксплуатацию.
Таблица 1.6 - Влияние флокулянта ВПК-402 и сульфата алюминия на качество очистки воды на водопроводной станции г. Ростова-на-Дону
В среднем за год | Доза реагентов, мг·л–1 | Мутность воды, мг·л–1 | ||||
ВПК-402 | сульфат алюминия | исходной | в смесителе | после отстойника | очищенной | |
1993 | - | 19,9 | 12,5 | 12,2 | 5,3 | 1,1 |
1995 | 0,23 | - | 13,3 | 7,7 | 3,7 | 0,96 |
По данным табл. 1.7 замена коагулянта СА на флокулянт ВПК-402 снизила содержание в очищенной воде остаточного алюминия, а остальные показатели очищенной воды изменялись одинаково. По сравнению с СА при использовании флокулянта ВПК-402 требуемый эффект очистки воды обеспечивался меньшими на порядок дозами.
Испытания катионного флокулянта ВПК-402 на водозаборе г. Новосибирска, проведенные в осенний паводок, показали его высокую эффективность при низкой температуре воды [38].
Влияние флокулянтов – анионного Магнафлока LT27 и катионного Магнифлока LT 573C совместно коагулянтом СА на цветность и мутность очистки воды р. Днепр в условиях Днепровской водопроводной станции г. Киева рассмотрено в работах [22]. Опыты проведены по методике пробного контактного коагулирования-флокулирования [39]. При дозе СА 5 мг·л–1 повышение степени осветления и обесцвечивания воды обеспечивалось лишь небольшими дозами (0,01 – 0,05 мг·л–1) Магнафлока LT27, а превышение этих доз увеличивало цветность очищенной воды (см. табл. 1.8). Магнифлок LT 573С в малых дозах повышал цветность воды и только при больших дозах – 0,5 – 1,25 мг·л–1 (при дозе коагулянта 2,5 – 5,0 мг·л–1) снижал мутность и цветность очищенной воды (см. табл. 1.9). Предварительное озонирование и хлорирование воды не повышало эффективность водоочистки.
Таблица 1.7 - Влияние флокулянта ВПК-402 и сульфата алюминия на качество очистки воды на водопроводной станции г. Ростова-на-Дону
Показатели | Среднегодовые данные | |||
1993 г. (сульфат алюминия) | 1995 г. (ВПК-402) | |||
р. Дон | Вода очищенная | р. Дон | Вода очищенная | |
Цветность, град | 17 | 7 | 18 | 8 |
рН | 8,2 | 7,8 | 8,1 | 7,8 |
Сухой остаток, мг·л–1 | 928 | 924 | 781 | 780 |
Жесткость общая, мг·л–1 | 7,75 | 7,75 | 6,57 | 6,57 |
Щелочность, мг·л–1 | 3,6 | 3,4 | 3,4 | 3,3 |
Хлориды, мг·л–1 | 154 | 156 | 115 | 117 |
Сульфаты, мг·л–1 | 280 | 278 | 230 | 229 |
Аммиак, мг·л–1 | 0,37 | 0,13 | 0,43 | 0,15 |
Нитриты, мг·л–1 | 0,058 | 0,003 | 0,0057 | 0,005 |
Нитраты, мг·л–1 | 3,88 | 3,03 | 3,59 | 2,75 |
Железо, мг·л–1 | 0,40 | 0,17 | 0,58 | 0,23 |
Алюминий, мг·л–1 | 0,07 | 0,18 | 0,07 | 0,08 |
Цинк, мг·л–1 | 0,012 | 0,009 | 0,009 | 0,001 |
Медь, мг·л–1 | 0,021 | 0,016 | 0,020 | 0,016 |
Марганец, мг·л–1 | 0,054 | 0,028 | 0,110 | 0,084 |
Нефтепродукты, мг·л–1 | 0,15 | 0,05 | 0,100 | 0,05 |
Таблица 1.8 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 3С
Дозы реагентов, мг·л–1 | Очищенная вода | ||
Al2(SO4)3 | Магнафлок LT | Цветность, град | Мутность, мг·л–1 |
0 | 0 | 23,0 | 0,5 |
0,02 | 0 | 21,0 | 0,5 |
0,02 | 0,01 | 18,0 | 0,3 |
0,02 | 0,02 | 18,0 | 0 |
0,02 | 0,05 | 18,0 | 0 |
0,02 | 0,07 | 21,0 | 0 |
0,02 | 0,10 | 21,0 | 0 |
0,02 | 0,30 | 22,0 | 0 |
Таблица 1.9 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 4С
Дозы реагентов, мг·л–1 | Очищенная вода | |||
Al2(SO4)3 | Магнафлок LT | Цветность, град | Мутность, мг·л–1 | |
0 | 0 | 23,0 | 4,0 | |
0,02 | 0 | 18,0 | 0,4 | |
0,02 | 0,015 | 15,0 | 0,4 | |
0,02 | 0,025 | 15,0 | 0,4 | |
0,02 | 0,050 | 15,0 | 0,4 | |
0,02 | 0,150 | 15,0 | 0,4 | |
0,02 | 0,250 | 15,0 | 0,4 | |
0,02 | 0,500 | 14,5 | 0,4 |
В работе [40] оценено качество очистки воды из поверхностных источников в питьевой водоподготовке при совместном использовании СА и различных флокулянтов – катионных Праестолов 611 и 650 (сополимеры АА с N-акриламидопропил-N,N,N-триметиламмонийхлоридом), анионных Праестолов 2530 и 2540, ПАА производства г. Ленинск-Кузнецкий, неионного ПАА АО «Бератон» (г. Березники), неионного ПАА Н-600 производства Завода им. С.М. Кирова (г. Пермь) и композиционного коагулянта-флокулянта КФ-91 производства КПП г. Волжский. Отмечено наиболее эффективное снижение остаточного алюминия и фитопланктона в воде, а также увеличение скорости седиментации при использовании Праестола 650 в весенний и летний периоды года и Праестола 2515 в зимних условиях (оптимальные дозы флокулянтов составляли 0,05 – 0,2 мг·дм–3).