162189 (595340), страница 4
Текст из файла (страница 4)
При этом m и
вычисляются по формулам:
(15)
m
1+ln n
(16)
=f(j)n
Ч
(17)
исло степеней свободы k для экспоненциального вида функции f(l) вычисляется как:k=m-2
Было выбрано m=8, при этом число R, вычисленное по формулам (13)-(17) составило 0,95<3, т.е. гипотезу о данном виде функции (12) можно считать верной.
Значения f(l), в зависимости от величины l, приведены в табл. 4.
Таблица 4
Значения аппроксимированной зависимости f(l)вероятности появления ИПС размером l от величины l
| l | f(l) |
| 1 | 2 |
| 1 | 0,262 |
| 2 | 0,192 |
Продолжение табл. 4
| 1 | 2 |
| 3 | 0,140 |
| 4 | 0,103 |
| 5 | 0,075 |
| 6 | 0,055 |
| 7 | 0,040 |
| 8 | 0,029 |
| 9 | 0,021 |
| 10 | 0,016 |
| 11 | 0,011 |
| 12 | 0,008 |
| 13 | 0,006 |
Пусть lmax-размер ИПС, начиная с которого, вероятность появления ИПС с размерами l
lmax по статистике меньше 0,01. Из приведенных в табл.4.12 результатов видно, что lmax =12 для исследуемых акций. В дальнейших расчетах, будем считать, что максимальный размер ИПС не превышает величины lmax. С учетом этого каждому незаконченному ИПС, размера l (l
lmax) можно поставить в соответствие функцию fl(х), которая определяет вероятности появления законченных ИПС с размером х: l
х
12. Функции fl(х) выражаются как:
(18)
, где 1
l
lmax, l
x
lmax.
Искомые величины Рр(a,b,c) и Рn(a,b,c) рассчитываются следующим образом:
(19)
Р
(20)
n(a,b,c)=1-Рр(a,b,c),где l - размер текущего незаконченного ИПС, l=a+b;
fl(x) - вероятность того, что ИПС размером x будет законченным;
H(x) - вероятность того, что новая сделка вызовет повышение САЛК
законченного ИПС размером x.
Поскольку с увеличением значения x число слагаемых в функции H(х) увеличивается по закону геометрической прогрессии, формулы расчета значений H(х) приведены только для H(l) и H(l+1), так что:
если с>0:
(21)
H(l)=Рpаc(a,b,c)
(22)
H(l+1)=Pt(c)Рpаc(a+1,b,c+1)+(1-Pt(c))Рpаc(a,b+1,-1)
е
(23)
сли с<0:H(l)=Рpаc(a,b,c)
(24)
H(l+1)=(1-Pt(c))Рpаc(a+1,b,1)+Pt(c)Рpаc(a,b+1,c-1)
где Рpаc(a,b,c) - вероятность повышения САЛК законченного ИПС с параметрами a,b,c;
Pt(c) - вероятность совершения новой сделки по направлению хвоста индекса незаконченного ИПС в зависимости от величины с.
2.2. Применение теории проверки гипотез Байеса
Пусть имеется выборка х=(х1,...,xn) размера n. Известно, что эта выборка принадлежит одному из двух распределений: W(x|A1) или W(x|A2). Априорные вероятности состояний А1 и А2 равны, соответственно, v1 и v2=1-v1. Необходимо найти оптимальный с точки зрения возможных потерь метод принятия решения о том, какому из указанных распределений принадлежит выборка.
Пусть H1 и H2 гипотезы о том, что выборка принадлежит распределениям, соответственно, W(x|A1) и W(x|A2), а
и
-решения, состоящие в принятии гипотез, соответственно, Н1 или Н2.
Определим граничное значение х*, в зависимости от которого по текущему х будем принимать решения в пользу гипотезы Н1 или Н2. При х<х*, условимся принимать решение
, тогда, как при х>х*, будем принимать решение
. Вероятности неизбежных ошибок при принятии решения выражаются как:
(25)
(26)
где р1 - вероятность принятия решения
при реализации гипотезы Н1;
р2 - вероятность принятия решения
при реализации гипотезы Н2.
Вероятности принятия правильных решений можно выразить как:
(27)
(28)
Пусть известны цены правильных и ошибочных решений, так что:
С11-цена правильного принятия решения
;
С21-цена ошибочного принятия решения
;
С22-цена правильного принятия решения
;
С12-цена ошибочного принятия решения
;
С12>C11, C21>C22.
Среднее значение потерь равно:
(29)
R=v1r1+v2r2
r
(30)
1=C11P(
|A1)+C12P(
|A1)=C11(1-p1)+C12p1
(31)
r2=C21P(
|A2)+C22P(
|A2)=C21p2+C22(1-p2)
Подставляя в (29) выражения (30) и (31), получим:
R
(32)
=v1C11+v2C21+v1(C12-C11)p1-v2(C21-C22)(1-p2)
Подставляя величины р1 и р2 из (25) и (26) в промежуточное выражение (32), находим, что окончательно среднее значение потерь определяется как:
(33)
Минимальное значение средних потерь R достигается, когда подынтегральная функция будет неотрицательной, или когда при интегрировании в области [x*,xn]:
(34)
v2(C21-C22)W(x|A2)
v1(C12-C11)W(x|A1)
Граничное значение х* находится из выражения:
(35)
Функция
называется отношением правдоподобия.
Обычно вместо граничного значения х* используется пороговое значение
, так что:
(36)
Тогда оптимальный метод принятия решения можно выразить так:
при L
, принимается решение
; при L<
, принимается решение
.
Отношения правдоподобия есть, по сути, отношение вероятностей наступления состояний А2 и А1 в зависимости от значения х:
(37)
С учетом вышеописанного, рассмотрим нахождение порога принятия решения для прогнозирования и принятия соответствующего рыночной ситуации правильного решения.
Пусть необходимо совершить определенную сделку покупки или продажи ценной бумаги. Такая ситуация может быть обусловлена приказом клиента, распоряжением руководства фирмы или просто собственным решением трейдера, принятым в результате рыночного анализа. Допустим, необходимо купить пакет акций.
Автор диссертации /1/ рассматривает два варианта вычисления порога принятия решения в зависимости от игнорирования или учета величины потенциальной потери.
Рассмотрим первый вариант, когда величина потенциальной потери не принимается в расчет. В этом конкретном случае переменные, входящие в выражение (36), определяются следующим образом.
Величины v2 и v1 описывают вероятности, соответственно, повышения и понижения котировок, которые показывают, как часто встречаются эти события в реальных условиях. Пусть частоты появления этих двух событий одинаковы, тогда:
(38)
v1=v2=0,5
Величина С11 представляет собой стоимость правильного решения «не покупать» при последующем снижении котировок. В рассматриваемом варианте:
(39)
С11=0
при этом отсутствуют как потери, так и выигрыши.
Величина С12 описывает стоимость ошибочного решения «покупать», при последующем снижении котировок. Эта стоимость складывается из величины убытка L, обусловленного снижением котировочных цен на купленные акции, и уплаченной комиссии за совершение сделки q:
(40)
С12=L+q
L вычисляется как произведение величины изменения САЛК и количества купленных акций :
L
(41)
(42)
=|S(i+1)-S(i)|NS(i+1)<>S(i)
В данной работе принимается, что величина ближайшего изменения САЛК |S(i+1)-S(i)| равняется текущей разнице между ценами лучших предложений на покупку и продажу.
Величина C21 представляет собой стоимость ошибочного решения «не покупать» при дальнейшем увеличении котировок. В данном случае теряется потенциальная прибыль, величина которой равна:
С
(43)
21=L-q
Величина C22 выражает стоимость правильного решения «покупать» при дальнейшем увеличении котировок, равную полученной прибыли:
(44)
С22=-(L-q)
(45)
(46)
Подставив величины С11, С12, С21, С22, определенные выражениями (38), (39), (40), (41), (44) в формулу (36), получим:
Из выражения (45) видно, что если величина q сравнима с L, потенциальная прибыль, в основном, пойдет на компенсацию комиссионных. В таких случаях, в соответствии с вышеизложенным методом оптимального принятия решения, следует покупать только при значениях Рр(a,b,c), близких к 1.
В случае, когда прибыль много больше комиссии (L>>q), из выражения (45) следует, что
~0,5. Это означает, что осуществлять покупку следует, если:
(46)
Рр(a,b,c)
0,5Pn(a,b,c)
Во втором варианте вычисления порога принятия решения учитывается величина потенциальной потери. В этом случае в выражении (36) переменная С11 определяется, исходя из следующих соображений. При правильном решении не покупать, с учетом последующего понижения котировок, трейдер виртуально выигрывает величину L+q. Так что:
(47)
С11=-(L+q)
После подстановки (38), (40), (43), (44), (47) в выражение (36), последнее приобретает следующий вид:
(48)
При условии L>>q, решение о покупке можно принимать только когда Рр(a,b,c)
Pn(a,b,c).
2.3. Метод принятия решения с применением теории нечетких множеств
Предлагаемая в данной работе нечеткая модель предназначена для принятия решения. В качестве входной информации (входных переменных модели) приняты следующие параметры:
- сравнение затраченных расходов на одну сделку с возможным убытком от совершения очередной сделки (сравнение комиссии с величиной возможного убытка);
- вероятность повышения САЛК текущего незаконченного ИПС;
- денежные средства на счету после совершения очередной сделки.
Модель должна оперировать с обычными (четкими) значениями переменных u (i=1,3). По этим данным модель должна принять решение о дальнейшей стратегии трейдера. В качестве такой выходной информации принимается один из трех возможных вариантов решения: продавать акции, или ждать, или покупать акции. Эти решения обозначим переменной v.
Переменные
называются базовыми переменными. Каждая из них определена на своем универсальном множестве, определяемом физическим смыслом переменной. Обозначим эти множества соответственно
.
Входные данные были оценены с помощью субъективных качественных понятий типа "много", "мало" и т.п. Эти качественные оценки отношения возможных убытков к комиссии, вероятности повышения, наличия денежных средств формализуются с помощью так называемых лингвистических переменных
соответственно.
Л
(49)
ингвистическая переменная /3/ Aj ( j =1,4) характеризуется следующим набором: <
>,
где Aj - название переменной;
T(Aj) - множество значений переменной (множество термов);
Uj - универсальное множество соответствующей базовой переменной u
.
Ниже приведены значения компонент указанного набора:
= "сравнение комиссии с величиной возможного убытка", Т(
) = "комиссия больше убытков, комиссия сравнима с убытками, комиссия меньше убытков";
= "вероятность повышения", Т(
) = "маленькая, средняя, большая ";
= "денежные средства на счету", Т(
) = "недостаточно средств для совершения сделки, достаточно средств для совершения сделки".
Множествам Т(
) и Т(
) соответствуют три терма, множеству Т(
) два.
Каждый терм Tji(Aj) (i = 1,3) характеризуется функцией принадлежности ji(uj), которая определена на соответствующем универсальном множестве Uj и выражает смысл данного терма.
Функции принадлежности имеют вид трапеций. Практика построения и использования функций принадлежности показала, что кусочно-линейная (треугольная или трапецеидальная) форма функции вполне удовлетворяет практическим потребностям /3/.
Определим теперь описание выходной переменной – принятия решения. Это лингвистическая переменная В, которая характеризуется также набором, подобным предыдущему:
(50)
<В, Т(В), V>,
где В - название переменной (В = "Принятие решения");
Т(В) - множество термов (Т(В) = "продавать", "ждать", "покупать");
V - универсальное множество базовой переменной v.
Заданы значения функции принадлежности
.
Модель управления в рассматриваемом случае есть модель связи между входными переменными
и выходной переменной v. Механизм этой связи включает суждения трейдера о значениях переменных. В результате на основе численного значения каждой из входных переменных оператор присваивает им качественные (то есть нечеткие) значения. Свое решение он также принимает на основе нечеткого значения выходной переменной. Это означает, что трейдер интуитивно пользуется нечеткой логикой, а конкретно - правилами нечеткого вывода. Поэтому в формальную модель управления включены эти правила.
Смысл нечеткого вывода состоит в следующем. Если А - причина (предпосылка), а В - результат (заключение), то можно определить нечеткое отношение R соответствия между А и В, смысл которого отражается в знании: из А скорее всего следует В. Это знание выражено формулой
(где
- это символ нечеткой импликации /3/ ). Тогда связь между нечеткой предпосылкой А и нечетким заключением В можно записать в виде:
(51)
здесь значок
- это правило композиционного вывода (правило свертки) /3/.
В рассматриваемой логической системе предпосылки определяются лингвистическими переменными
, а заключение - лингвистической переменной В. В каждом конкретном правиле имеются три предпосылки (по числу входных переменных) и одно заключение. Каждое такое логическое правило определяет одно из возможных состояний объекта управления, а полный набор правил характеризует все возможные состояния. Поскольку в правилах вывода должны присутствовать все комбинации значений, то общее число правил равно 3
*2= 18.
В виде термов одно из этих правил может быть написано следующим образом: если комиссия сравнима с величиной возможного убытка, вероятность повышения большая, достаточно средств для совершения сделки, то принять решение «покупать».
Для превращения этого текста в формальную процедуру нужно установить вид правила композиционного вывода в форму нечеткой импликации.
В качестве правила композиционного вывода примем максиминную композицию, а в качестве нечеткой импликации - правило минимума (пересечение нечетких множеств предпосылки и заключения).
Нечеткое отношение R для L-го правила между j-й входной переменной
и выходной переменной v в соответствии с принятым правилом минимума выражено следующей функцией принадлежности:
(52)
Здесь индекс i(L) означает индекс i-го терма в L-м правиле вывода (напомним, что термов входных переменных всего три). Функция принадлежности (52) отображает отношение связи между числовыми значениями в паре (
). Чем больше ее значение, тем теснее эта связь.
Результаты измерения (наблюдения) входных переменных могут быть выражены как обычными числовыми (четкими) значениями, так и качественными значениями (нечеткими множествами).
Пусть входные переменные
представлены нечеткими множествами
с функциями принадлежности
. Заметим, что эти функции есть результат работы системы наблюдения (измерения) в отличие от ранее введенных функций ji(uj), которые выражают мнение эксперта-трейдера по поводу конкретных значений
. Тогда в соответствии с формулой (51) и принятым правилом композиционного вывода (maxmin) можно записать связь между выходной переменной v и входной переменной
следующим образом:
(53)
(
Здесь
есть функция принадлежности, устанавливающая локальную связь между нечеткой входной переменной
и нечеткой выходной переменной v.















