162189 (595340), страница 4

Файл №595340 162189 (Система "Aлор-Трейд") 4 страница162189 (595340) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

При этом m и вычисляются по формулам:

(15)



m 1+ln n

(16)



=f(j)n



Ч

(17)

исло степеней свободы k для экспоненциального вида функции f(l) вычисляется как:

k=m-2

Было выбрано m=8, при этом число R, вычисленное по формулам (13)-(17) составило 0,95<3, т.е. гипотезу о данном виде функции (12) можно считать верной.

Значения f(l), в зависимости от величины l, приведены в табл. 4.



Таблица 4

Значения аппроксимированной зависимости f(l)вероятности появления ИПС размером l от величины l

l

f(l)

1

2

1

0,262

2

0,192



Продолжение табл. 4



1

2

3

0,140

4

0,103

5

0,075

6

0,055

7

0,040

8

0,029









9

0,021

10

0,016

11

0,011

12

0,008

13

0,006



Пусть lmax-размер ИПС, начиная с которого, вероятность появления ИПС с размерами l lmax по статистике меньше 0,01. Из приведенных в табл.4.12 результатов видно, что lmax =12 для исследуемых акций. В дальнейших расчетах, будем считать, что максимальный размер ИПС не превышает величины lmax. С учетом этого каждому незаконченному ИПС, размера l (l lmax) можно поставить в соответствие функцию fl(х), которая определяет вероятности появления законченных ИПС с размером х: l х 12. Функции fl(х) выражаются как:



(18)

,

где 1 l lmax, l x lmax.



Искомые величины Рр(a,b,c) и Рn(a,b,c) рассчитываются следующим образом:



(19)

Р

(20)

n(a,b,c)=1-Рр(a,b,c),

где l - размер текущего незаконченного ИПС, l=a+b;

fl(x) - вероятность того, что ИПС размером x будет законченным;

H(x) - вероятность того, что новая сделка вызовет повышение САЛК

законченного ИПС размером x.



Поскольку с увеличением значения x число слагаемых в функции H(х) увеличивается по закону геометрической прогрессии, формулы расчета значений H(х) приведены только для H(l) и H(l+1), так что:

если с>0:

(21)



H(l)=Рpаc(a,b,c)

(22)

H(l+1)=Pt(c)Рpаc(a+1,b,c+1)+(1-Pt(c))Рpаc(a,b+1,-1)



е

(23)

сли с<0:

H(l)=Рpаc(a,b,c)

(24)



H(l+1)=(1-Pt(c))Рpаc(a+1,b,1)+Pt(c)Рpаc(a,b+1,c-1)



где Рpаc(a,b,c) - вероятность повышения САЛК законченного ИПС с параметрами a,b,c;

Pt(c) - вероятность совершения новой сделки по направлению хвоста индекса незаконченного ИПС в зависимости от величины с.



2.2. Применение теории проверки гипотез Байеса



Пусть имеется выборка х=(х1,...,xn) размера n. Известно, что эта выборка принадлежит одному из двух распределений: W(x|A1) или W(x|A2). Априорные вероятности состояний А1 и А2 равны, соответственно, v1 и v2=1-v1. Необходимо найти оптимальный с точки зрения возможных потерь метод принятия решения о том, какому из указанных распределений принадлежит выборка.

Пусть H1 и H2 гипотезы о том, что выборка принадлежит распределениям, соответственно, W(x|A1) и W(x|A2), а и -решения, состоящие в принятии гипотез, соответственно, Н1 или Н2.

Определим граничное значение х*, в зависимости от которого по текущему х будем принимать решения в пользу гипотезы Н1 или Н2. При х<х*, условимся принимать решение , тогда, как при х>х*, будем принимать решение . Вероятности неизбежных ошибок при принятии решения выражаются как:

(25)

(26)

где р1 - вероятность принятия решения при реализации гипотезы Н1;

р2 - вероятность принятия решения при реализации гипотезы Н2.



Вероятности принятия правильных решений можно выразить как:

(27)

(28)

Пусть известны цены правильных и ошибочных решений, так что:

С11-цена правильного принятия решения ;

С21-цена ошибочного принятия решения ;

С22-цена правильного принятия решения ;

С12-цена ошибочного принятия решения ;

С12>C11, C21>C22.

Среднее значение потерь равно:

(29)



R=v1r1+v2r2



r

(30)

1=C11P( |A1)+C12P( |A1)=C11(1-p1)+C12p1

(31)



r2=C21P( |A2)+C22P( |A2)=C21p2+C22(1-p2)



Подставляя в (29) выражения (30) и (31), получим:



R

(32)

=v1C11+v2C21+v1(C12-C11)p1-v2(C21-C22)(1-p2)



Подставляя величины р1 и р2 из (25) и (26) в промежуточное выражение (32), находим, что окончательно среднее значение потерь определяется как:



(33)



Минимальное значение средних потерь R достигается, когда подынтегральная функция будет неотрицательной, или когда при интегрировании в области [x*,xn]:

(34)



v2(C21-C22)W(x|A2) v1(C12-C11)W(x|A1)



Граничное значение х* находится из выражения:

(35)



Функция называется отношением правдоподобия.

Обычно вместо граничного значения х* используется пороговое значение , так что:

(36)



Тогда оптимальный метод принятия решения можно выразить так:

при L , принимается решение ; при L< , принимается решение .

Отношения правдоподобия есть, по сути, отношение вероятностей наступления состояний А2 и А1 в зависимости от значения х:



(37)

С учетом вышеописанного, рассмотрим нахождение порога принятия решения для прогнозирования и принятия соответствующего рыночной ситуации правильного решения.

Пусть необходимо совершить определенную сделку покупки или продажи ценной бумаги. Такая ситуация может быть обусловлена приказом клиента, распоряжением руководства фирмы или просто собственным решением трейдера, принятым в результате рыночного анализа. Допустим, необходимо купить пакет акций.

Автор диссертации /1/ рассматривает два варианта вычисления порога принятия решения в зависимости от игнорирования или учета величины потенциальной потери.

Рассмотрим первый вариант, когда величина потенциальной потери не принимается в расчет. В этом конкретном случае переменные, входящие в выражение (36), определяются следующим образом.

Величины v2 и v1 описывают вероятности, соответственно, повышения и понижения котировок, которые показывают, как часто встречаются эти события в реальных условиях. Пусть частоты появления этих двух событий одинаковы, тогда:

(38)



v1=v2=0,5



Величина С11 представляет собой стоимость правильного решения «не покупать» при последующем снижении котировок. В рассматриваемом варианте:

(39)



С11=0



при этом отсутствуют как потери, так и выигрыши.

Величина С12 описывает стоимость ошибочного решения «покупать», при последующем снижении котировок. Эта стоимость складывается из величины убытка L, обусловленного снижением котировочных цен на купленные акции, и уплаченной комиссии за совершение сделки q:

(40)



С12=L+q



L вычисляется как произведение величины изменения САЛК и количества купленных акций :

L

(41)

(42)

=|S(i+1)-S(i)|N

S(i+1)<>S(i)



В данной работе принимается, что величина ближайшего изменения САЛК |S(i+1)-S(i)| равняется текущей разнице между ценами лучших предложений на покупку и продажу.

Величина C21 представляет собой стоимость ошибочного решения «не покупать» при дальнейшем увеличении котировок. В данном случае теряется потенциальная прибыль, величина которой равна:



С

(43)

21=L-q



Величина C22 выражает стоимость правильного решения «покупать» при дальнейшем увеличении котировок, равную полученной прибыли:

(44)



С22=-(L-q)

(45)

(46)



Подставив величины С11, С12, С21, С22, определенные выражениями (38), (39), (40), (41), (44) в формулу (36), получим:





Из выражения (45) видно, что если величина q сравнима с L, потенциальная прибыль, в основном, пойдет на компенсацию комиссионных. В таких случаях, в соответствии с вышеизложенным методом оптимального принятия решения, следует покупать только при значениях Рр(a,b,c), близких к 1.

В случае, когда прибыль много больше комиссии (L>>q), из выражения (45) следует, что ~0,5. Это означает, что осуществлять покупку следует, если:

(46)



Рр(a,b,c) 0,5Pn(a,b,c)

Во втором варианте вычисления порога принятия решения учитывается величина потенциальной потери. В этом случае в выражении (36) переменная С11 определяется, исходя из следующих соображений. При правильном решении не покупать, с учетом последующего понижения котировок, трейдер виртуально выигрывает величину L+q. Так что:

(47)



С11=-(L+q)

После подстановки (38), (40), (43), (44), (47) в выражение (36), последнее приобретает следующий вид:

(48)





При условии L>>q, решение о покупке можно принимать только когда Рр(a,b,c) Pn(a,b,c).



2.3. Метод принятия решения с применением теории нечетких множеств



Предлагаемая в данной работе нечеткая модель предназначена для принятия решения. В качестве входной ин­формации (входных переменных модели) приняты следующие па­раметры:

- сравнение затраченных расходов на одну сделку с возможным убытком от совершения очередной сделки (сравнение комиссии с величиной возможного убытка);

- вероятность повышения САЛК текущего незаконченного ИПС;

- денежные средства на счету после совершения очередной сделки.

Модель должна оперировать с обычными (четкими) значениями переменных u (i=1,3). По этим данным модель должна принять решение о дальнейшей стратегии трейдера. В качестве такой выходной ин­формации принимается один из трех возможных вариантов решения: продавать акции, или ждать, или покупать акции. Эти решения обозначим переменной v.

Переменные называются базовыми переменными. Каждая из них определена на своем универсальном множестве, определяемом физическим смыслом переменной. Обозначим эти множества соот­ветственно .

Входные данные были оценены с помощью субъективных качественных понятий типа "много", "мало" и т.п. Эти качественные оценки отношения возможных убытков к комиссии, вероятности повышения, наличия денежных средств формализуются с помощью так называемых лингвистических перемен­ных соответственно.

Л

(49)

ингвистическая переменная /3/ Aj ( j =1,4) характе­ризуется следующим набором:

< >,

где Aj - название переменной;

T(Aj) - множество зна­чений переменной (множество термов);

Uj - универ­сальное множество соответствующей базовой перемен­ной u .



Ниже приведены значения компонент указанного набора:

= "сравнение комиссии с величиной возможного убытка", Т( ) = "комиссия больше убытков, комиссия сравнима с убытками, комиссия меньше убытков";

= "вероятность повышения", Т( ) = "маленькая, сред­няя, большая ";

= "денежные средства на счету", Т( ) = "недостаточно средств для совершения сделки, достаточно средств для совершения сделки".

Множествам Т( ) и Т( ) соответствуют три терма, множеству Т( ) два.

Каждый терм Tji(Aj) (i = 1,3) характеризуется функцией принадлежности ji(uj), которая определена на соответствующем универсальном множестве Uj и выражает смысл данного терма.

Функции принадлежности имеют вид трапеций. Практика построения и использования функций принадлежности показала, что кусочно-линейная (тре­угольная или трапецеидальная) форма функции вполне удовлетворяет практическим потребностям /3/.

Определим теперь описание выходной переменной – принятия решения. Это лингвистическая пере­менная В, которая характеризуется также набором, по­добным предыдущему:

(50)



<В, Т(В), V>,

где В - название переменной (В = "Принятие решения");

Т(В) - множество термов (Т(В) = "продавать", "ждать", "покупать");

V - универсальное мно­жество базовой переменной v.



Заданы значения функции принадлежности .

Модель управления в рассматриваемом случае есть модель связи между входными переменными и выходной переменной v. Механизм этой связи включает суждения трейдера о значениях переменных. В результате на основе численного значения каждой из входных переменных оператор присваивает им качест­венные (то есть нечеткие) значения. Свое решение он также принимает на основе нечеткого значения выход­ной переменной. Это означает, что трейдер интуитив­но пользуется нечеткой логикой, а конкретно - прави­лами нечеткого вывода. Поэтому в формальную модель управления включены эти правила.

Смысл нечеткого вывода состоит в следующем. Ес­ли А - причина (предпосылка), а В - результат (заклю­чение), то можно определить нечеткое отношение R соответствия между А и В, смысл которого отражается в знании: из А скорее всего следует В. Это знание вы­ражено формулой (где - это символ нечет­кой импликации /3/ ). Тогда связь между нечеткой предпосылкой А и нечетким заключением В можно за­писать в виде:

(51)





здесь значок - это правило композиционного вывода (правило свертки) /3/.

В рассматриваемой логической системе предпосыл­ки определяются лингвистическими переменными , а заключение - лингвистической перемен­ной В. В каждом конкретном правиле имеются три предпосылки (по числу входных переменных) и одно заключение. Каждое такое логическое правило опреде­ляет одно из возможных состояний объекта управле­ния, а полный набор правил характеризует все возмож­ные состояния. Поскольку в правилах вывода должны при­сутствовать все комбинации значений, то общее число правил равно 3 *2= 18.

В виде термов одно из этих правил может быть на­писано следующим образом: если комиссия сравнима с величиной возможного убытка, вероятность повышения большая, достаточно средств для совершения сделки, то принять решение «покупать».

Для превращения этого текста в формальную про­цедуру нужно установить вид правила композиционно­го вывода в форму нечеткой импликации.

В качестве правила композиционного вывода примем максиминную композицию, а в качестве нечет­кой импликации - правило минимума (пересечение не­четких множеств предпосылки и заключения).

Нечеткое отношение R для L-го правила между j-й входной переменной и выходной переменной v в со­ответствии с принятым правилом минимума выражено следующей функцией принадлежности:

(52)





Здесь индекс i(L) означает индекс i-го терма в L-м правиле вывода (напомним, что термов входных пере­менных всего три). Функция принадлежности (52) отоб­ражает отношение связи между числовыми значениями в паре ( ). Чем больше ее значение, тем теснее эта связь.

Результаты измерения (наблюдения) входных пере­менных могут быть выражены как обычными числовы­ми (четкими) значениями, так и качественными значе­ниями (нечеткими множествами).

Пусть входные переменные представлены нечет­кими множествами с функциями принадлежности . Заметим, что эти функции есть результат работы системы наблюдения (измерения) в отличие от ранее введенных функций ji(uj), которые выражают мнение эксперта-трейдера по поводу конкретных значений . Тогда в соответствии с формулой (51) и принятым пра­вилом композиционного вывода (maxmin) можно запи­сать связь между выходной переменной v и входной переменной следующим образом:



(53)

(



Здесь есть функция принадлежности, устанав­ливающая локальную связь между нечеткой входной переменной и нечеткой выходной переменной v.

Характеристики

Тип файла
Документ
Размер
13,66 Mb
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7028
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее