151493 (594692), страница 3

Файл №594692 151493 (Анализ и моделирование методов когерентной оптики в медицине и биологии) 3 страница151493 (594692) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Изображения содержат информацию об объеме объекта, но эту информацию не так легко воспринять, как глубину сцены в «обычной оптической голографии». Причина этого ясна, и применение когерентной оптики к вопросам биомедицины является важной иллюстрацией более общей проблемы. В случае обычной оптической френелевской голограммы мы наблюдаем сцену сквозь голограмму, линейные размеры которой могут быть 10—20 см. Стандартная пленка записывает 2*104 лин/см, или около 2*105—4*105 интерференционных полос в голограмме в видимом свете.

Таким образом, вся голограмма может содержать около 1011 разрешимых пространственных элементов или элементов изображения. На рис. 2.1. показано, как можно наблюдать объект через такую оптическую голограмму. Часть всей голограммы, образующая изображение, наблюдаемое глазом, очень мала, но число содержащихся элементов изображения может все еще равняться 106 или больше в зависимости от того, где расположены глаза наблюдателя. Типичные акустические голограммы далеко не содержат 1011 элементов изображения. В результате этого их нельзя использовать как оптические голограммы, которые были только что описаны. Вместо того чтобы наблюдать трехмерную сцену в большое окно, мы наблюдаем ее в замочную скважину! Без изменений перспективы, имеющих место при более широкой апертуре, мы теряем ощущение объема. Мы не можем видеть трехмерную картину в замочную скважину. Это положение иллюстрируется па рис. 2.2. Итак, мы должны использовать всю голограмму для создания изображения. Исчезает параллакс, но зато остается глубина фокусировки при формировании изображения. Поэтому можно осуществлять фокусировку на последовательные плоскости с обычной глубиной фокусировки, которая имеет место в случае получения обычного акустического изображения. Это значит, что голограмма с апертурой А, рассматривающая объект на расстоянии d при длине акустической волны л, имеет разрешение по глубине примерно . Часто различные «плоскости» фокусируются последовательно на видикон для удобства телевизионного считывания. Общей проблемой, показанной здесь, является относительная малочисленность данных, обычно встречающаяся в биомедицинских изображениях. Таким образом, если бы были доступны удобные и быстрые матрицы преобразователей в 103*103 элементов, то они могли бы заменить непосредственно формируемые голограммы, а изображения могли бы формироваться не при помощи дифракции, а с помощью машинного преобразования Френеля. В акустической голографии когерентная оптика используется не вследствие своих сильных качеств (высокая скорость обработки данных), а просто потому, что она является (в настоящее время) более дешевой и удобной.

Рис. 2.1. Наблюдение изображения с обычной оптической голограммы

Рис. 2.2. Наблюдение изображения с голограммы небольшого размера, например, акустической.

Такое удачное стечение обстоятельств действительно имеет место в случае с когерентной оптикой, но оно не приводит к стабильному преимуществу. Цифровые матричные преобразователи и цифровые процессоры станут более дешевыми и более быстрыми. Для того чтобы сохранять свое место, средства когерентной оптики должны также совершенствоваться.

Получение акустической голограммы — сложная задача, выходящая за рамки данной главы (более детальное рассмотрение см. в [1.16]), но Мы можем наметить те моменты, которые характерны для выбранного метода при любых применениях. Первый момент состоит в решении, должна ли голограмма быть получена в реальном времени. Голографирование в реальном времени является действительной необходимостью для некоторых объектов (например, плавающая рыба, работающие мышцы). Важно помнить, что объект должен быть, не только фотографически неподвижен (движение меньше, чем разрешение), но также и голографическн неподвижен (движение меньше чем четверть длины волны). Таким образом, хотя использование акустических голограмм, снимаемых в стационарных условиях, широко предлагалось для промышленного контроля, биомеднцииская акустическая голография почти исключительно связана с методами, использующими реальное время. Второй момент заключается в методе освещения объекта.

Так как внешние поверхности объектов легко записываются с помощью оптической голографии, акустическую голографию редко применяют для регистрации звука, рассеянного поверхностью. Скорее, ее используют почти исключительно для (наблюдения) видения сквозь оптически непрозрачные объекты. Таким образом, объект должен просвечиваться, но только звуковыми волнами. Для того чтобы связать эффективно ультразвук с объектом, а затем с записывающей плоскостью, все устройство и объект обычно погружаются в жидкость (как правило, в воду).

Вследствие большой величины относительного отверстия нетрудно изготовить высококачественные акустические линзы; такие линзы используют часто для перенесения изображения объекта ближе к плоскости голограммы, что обеспечивает запись голограммы с большой величиной относительного отверстия для достаточно удаленных объектов. Следующим шагом является введение опорного пучка. Преобразователи и управляющая электроника настолько хороши, а частоты так низки (по сравнению с оптическими частотами), что можно получать объектный и опорный пучки от разных преобразователей. Мы выбираем такую схему, чтобы она давала интерференционные полосы, разрешимые регистрирующей средой (при этом осуществляется запись максимального количества информации).

Преимущества формирования акустических изображений перед неакустическими в биомедицинских применениях очевидны и просты. При получении изображений внутренних органов ультразвук гораздо более безопасен, чем рентгеновские лучи, хотя требования к технике безопасности все еще активно обсуждаются. Однако даже ультразвук не безвреден, и, по-видимому, оценки допустимой дозы ежегодно пересматриваются в меньшую сторону. Таким образом, чувствительность различных методов имеет очень большое значение. Ограничения чувствительности могут возникать из ультразвуковых эффектов или из эффектов записи или восстановления. Так, например, квантовый шум может ограничивать чувствительность акустических методов, используемых в реальном масштабе времени, которые предполагают восстановление лазерным пучком. С помощью ультразвука легко распознаются мягкие ткани, являющиеся почти одинаково прозрачными для рентгеновских лучей.

С другой стороны, преимущества акустической голографии перед наиболее развитыми неголографическими акустическими методами формирования изображений уже не вполне очевидны. Даже разрешение по глубине доступно неголографическим способам [1.20]. Высокое поперечное разрешение легко осуществимо с помощью сканирующих преобразователей.

Рис. 2.3. Коммерческая ультразвуковая голографическая установка (С разрешения фирмы Holosonics, Inc.).

Таким образом, имеется иерархия несомненных фактов. Наиболее определенным фактом является полезность формирования изображения с помощью ультразвуковых волн в биомедицинских исследованиях. Менее очевидно, следует ли это изображение формировать голографическим или неголографическим способом.

Наименее определенно, по-прежнему ли этап формирования видимого изображения в акустической голографии будет включать использование когерентного света, даже если выбрана акустическая голография. Когерентные оптические методы наиболее полезны там, где затруднена обработка на вычислительной машине: в формировании изображений в реальном времени.

Визуализация акустических трехмерных изображений позволяет наблюдать объекты, интересные в биомедицинском отношении в реальном времени в выбранных по глубине плоскостях. Динамические изображения всегда гораздо лучше (косметически), чем отдельные кадры, как будет показано ниже, так как движение стремится размыть «когерентные эффекты». На рис. 2.3. показана промышленная система ультразвуковой голографии, основанная на стоячих рельефных волнах на поверхности жидкости, получающихся в результате интерференции между акустическими опорным и объектным пучками. Облучение этой поверхности лазерным пучком создает достоверное томографическое изображение объекта. Так, видикон может сканировать изображение с тем, чтобы наблюдать различные сечения объекта. Одним из наиболее полезных применений является визуализация объектов с переменной и неизвестной глубиной.

На рис. 2.4 показаны кровеносные сосуды человека в конечностях (глубоко лежащие внутренние структуры взрослых людей оказываются слишком сложными объектами для получения изображений с помощью существующего оборудования). Эти картины были сняты с телевизионного устройства только что описанной системы, когда конечность помещали в просвечиваемый ультразвуком резервуар с водой. Существует много потенциальных применений акустической голографии.

Рис. 2.4. Изображение, полученное с помощью ультразвуковой голографической установки, приведенной на рис. 2.3 (С разрешения фирмы Holosonics, Inc.). с — раэдноенный кровеносный сосуд в верхней части рукн: б — глубокий кровеносный сосуд в нижней части ноги вблизи большой берцовой кости.

Рис. 2.5. Псевдоскопическое изображение тропической рыбки, полученное в реальном времени Вейдом и Лэндри (Калифорнийский университет, Санта-Барбара) в 1968 г.

Непрозрачность кристаллов холестерина указывает па возможность наблюдения холестериновых образований в сосудах. Еще одной когерентной оптической системой, работающей в реальном времени, является формирование изображений на основе дифракции Брэгга. В такой системе объект освещается одночастотным преобразователем, расположенным на дне резервуара с жидкостью. Трехмерное звуковое поле, образованное в резервуаре, характеризует трехмерную структуру объекта. Освещение такой трехмерной звуковой картины лазерным пучком приводит к дифракции света. Дифракция на трехмерных структурах называется дифракцией Брэгга. Анализ продифрагированного света с помощью линзы создает трехмерное оптическое изображение объекта, каким он наблюдается на выбранной длине акустической волны. Так как длины оптической и звуковой волн не равны, различны поперечное и продольное увеличения, т. е. оптическое изображение до некоторой степени искажено. На рис. 2.5 приведено одно из первых изображений биологического объекта, полученного с помощью дифракции Брэгга. Спустя семь лет после получения этого изображения качество и разрешение изображений, получаемых по этому методу, были значительно улучшены, но, не было снято никаких изображений биологического характера.

2.2 Формирование изображений методом кодирования апертуры

Формирование изображений методом кодирования апертуры — это принятое название безлинзового двухступенчатого процесса формирования изображений в точности по аналогии с обычной голографией. В обоих случаях первый шаг состоит в записи кодированного изображения объекта. В голографии кодированное изображение называется «голограммой». В случае формирования изображения с кодированием апертуры не возникло никакого общепринятого названия для кодированного изображения.

По аналогии с «голограммой» будем называть его «кодограммой». Вторым шагом является формирование трехмерного изображения путем декодирования голограммы или кодограммы. Голограммы образуются в результате интерференции между опорным и объектным волновым фронтами. Кодограммы образуются при использовании самоизлучающих объектов, отбрасывающих тени специально построенных масок на регистрирующую плоскость. Если маска оказывается френелевской зонной пластинкой, как было первоначально предложено Мертцем и Юнгом [1.21, 22], кодограмма объекта идентична голограмме похожего объекта, так что методы декодирования будут идентичны. Если кодирующая маска весьма отличается от френелевской зонной пластинки (которая есть не что иное, как бинарная голограмма точечного объекта), то будут необходимы отличные методы декодирования.

Можно показать, что кодограмма является сверткой картины объекта с апертурой (причем масштаб каждой из них зависит от геометрии схемы записи и объемных свойств объекта). Чанг и др. [1.23] различают три типа декодирующих операций: корреляцию, дифракцию и операцию, обратную свертке. Корреляция с кодирующей картиной маски является средством для превращения ее в точку (если автокорреляционная функция изображения маски имеет резкий пик). Дифракция полезна в случае, если кодирующая маска является самоизображающей (например, если это— френелевская зонная пластинка или голограмма точки, рассчитанная на вычислительной машине). Операция, обратная свертке, включает комплексную фильтрацию Фурье-образа кодограммы. Как показал Чанг и др. [1.23] и многие другие исследователи, у каждой декодирующей схемы есть свои преимущества.

Характеристики

Тип файла
Документ
Размер
9 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее