151195 (594645), страница 7
Текст из файла (страница 7)
Находят КЛ35. Для определения капиталовложений по сооружению двух цепей линии 35 кВ (W1 и W2) необходимо знать сечение проводов линий. Выбор сечения проводов производят из расчета обеспечения питания предприятия по одной линии в случае повреждения или отключения другой.
1. Определяют ток в линии в нормальном и послеаварийном режимах по формулам (2.9.4) и (2.9.5):
2. Сечение провода рассчитывают по экономической плотности тока.
Для коксохимического завода : Тма = 6000-8000 ч., Тмр = 7662ч. [10]. Следовательно jэк = 1 А/мм2 [9].
Отсюда, по формуле (2.9.6):
По полученному сечению выбирают алюминиевый провод со стальным сердечником марки АС-300/39 (по условиям короны).
Уже на данном этапе расчета можно сделать вывод о невыгодности применения ВЛЭП на 35 кВ, поскольку провод такого сечения на данное напряжение на практике никогда не применяется. Но для продолжения рассмотрения примера ТЭР, принимают допустимую перегрузку линии в аварийном режиме равной 1,45 [19]. Тогда сечение линии должно соответствовать пропускаемой мощности Sn:
(2.9.16)
1. Определяют ток в линии в нормальном и послеаварийном режимах по формулам (2.9.4) и (2.9.5):
;
.
2. Сечение провода рассчитывают по экономической плотности тока.
Как известно, для коксохимического завода : Тма = 6000-8000 ч., Тмр = 7662ч. [10]. Следовательно jэк = 1 А/мм2 [9].
Отсюда, по формуле (2.9.6):
По полученному сечению выбирают алюминиевый провод со стальным сердечником марки АС-150/24 (по условиям короны).
3. Проверяют сечение провода по условию допустимого нагрева.
По ПУЭ [9] допустимый предельный ток для провода на 35 кВ сечением 150/24 мм2 равен 450 А, следовательно Iпар = 357,65 А < Iд = 450 А. Сечение по данному условию подходит.
4. Проверяют сечение провода по падению напряжения в линии в нормальном и послеаварийном режимах по формулам (2.9.7), (2.9.8) и (2.9.9):
Удельные сопротивления для провода АС-150/24 равны r0 = 0,198 Ом/км и xо = 0,406 Ом/км [18]. По формуле (2.9.7):
5. По условию коронного разряда и уровню радиопомех провод такого сечения можно использовать.
Стоимость ВЛЭП 35 кВ с проводами марки АС-150/24 для стальных двухцепных опор для III района по гололеду, к которому относится Омская область, равна [8].
Используя найденный ранее коэффициент пересчета
, по формуле (1.1.7) определяют, что современная стоимость данной ВЛЭП 35 кВ длинной l = 7 км будет составлять:
Находят КОБ35. Для определения капиталовложений по сооружению подстанции 35 кВ необходимо выбрать силовой трансформатор (Т1 и Т2), выключатель (Q1, Q2, Q3 и Q4) и разъединитель (QS1 – QS8).
Так как на предприятии имеются потребители II категории, то также, как и в предыдущем случае, устанавливают двухтрансформаторную подстанцию.
Мощность трансформаторов определяем по суточному графику нагрузки (рис. 6). Для этого рассчитывают среднеквадратичную мощность по формуле (2.9.10):
Определяют мощность одного трансформатора по формуле (2.9.11):
Выбирают трехфазный трансформатор с расщепленной обмоткой низшего напряжения с принудительной циркуляцией воздуха и естественной циркуляцией масла оборудованный системой регулирования напряжения для систем собственных нужд электростанций ТРДНС – 25000/35 [8] (Sном = 25 МВА; Uвн = 36,75 кВ; Uнн = 6,3/6,3; Pх = 25 кВт; Pк = 115 кВт; Uк = 10,5%; Iх = 0,65 %) с регулировкой напряжения под нагрузкой (РПН) и производят проверку на эксплуатационную перегрузку. Трансформатор ТРДНС-25000/35 не может применяться для установки на подстанциях, поскольку он предназначен для систем собственных нужд электростанций. Это говорит о неприемлемости варианта системы питания на напряжение 35 кВ. Однако, для примера ТЭР, продолжают расчет.
Коэффициент предварительной загрузки по формуле (2.9.12):
Коэффициент максимума по формуле (2.9.13):
Коэффициент перегрузки по формуле (2.9.14):
По кривым зависимости коэффициентов К1 и К2 согласно [2] определяют К2’. Получают К2’ = 1,4 К2 = 1,14
Трансформатор находится на границе зоны систематической перегрузки (К2<1,5), но с учетом погрешности вычислений и возможности отключения потребителей III категории в летнее время при больших температурах окружающей среды в аварийном режиме, принимают трансформатор ТРДНС – 25000/35.
Расчетная стоимость трехфазного трансформатора 35 кВ мощностью SНОМ = 25 МВА, равна [8].
С учетом найденного ранее коэффициента пересчета на цены 2002 года, получают, что капиталовложения в трансформатор по формуле (1.1.7) составят:
Затем находят КВ35. На данном этапе проектирования выбор высоковольтных выключателей может быть осуществлен лишь по двум параметрам: . Учитывая это обстоятельство, выбирают воздушный выключатель усиленного типа ВВУ-35Б-40/2000ХЛ1 [6].
( ).
Его стоимость равна
С учетом найденного ранее коэффициента пересчета , современная стоимость высоковольтного воздушного выключателя ВВУ-35Б-40/2000ХЛ1 по формуле (1.1.7), равна:
Определяют КР35. Выбор разъединителей также осуществляют по номинальному напряжению и току: , как и в предыдущем случае. Выбирают разъединитель наружной установки двухколонковый с заземляющими ножами РНД(З)-35/1000У1 [20].
( ).
Его стоимость равна
С учетом найденного ранее коэффициента пересчета , современная стоимость высоковольтного разъединителя РНД(З)-35/1000У1 по формуле (1.1.7), равна:
Таким образом, капиталовложения в оборудование подстанции 35 кВ КОБ35 по формуле (2.9.15), равны:
Далее переходят к нахождению стоимости потерь энергии. Стоимость потерь энергии для линии и для оборудования (трансформатора) рассчитывается отдельно.
Стоимость потерь энергии для линий определяется по выражению (1.1.8), руб/год,
здесь I — максимальный ток в линии, А. Потери энергии будем для простоты определять без учета ежегодного роста нагрузки. Для линии 35 кВ
, а для линии 110 кВ -
R —активное сопротивление линий, Ом. Для линии 35 кВ , для линии 110 кВ
.
— время максимальных потерь, ч/год [определяется по заданному числу часов использования максимума Тмакс (см. 8, рис. 6.1)]. Для коксохимического завода , как уже отмечалось ранее, [10]. Используя указанную зависимость
для любых значений
находят, что
.
сЭ — стоимость 1 кВтч потерь энергии по замыкающим затратам, руб/(кВтч). Величина сЭ в общем случае зависит от .
Согласно основным методическим положениям технико-экономических расчетов в энергетике стоимость потерь энергии по замыкающим затратам принята равной средней в энергосистеме себестоимости электроэнергии, отпущенной с шин новых конденсационных электростанций.
На современном этапе принимают .
Итак, стоимость потерь энергии для линии 35 кВ по формуле (1.1.8):
.
Стоимость потерь энергии для линии 110 кВ по формуле (1.1.8):
.
Стоимость потерь энергии группы одинаковых параллельно включенных трансформаторов определяется по выражению (1.1.10), руб/год,
здесь n — число трансформаторов в группе. В данном случае для обоих вариантов напряжения n = 2.
PX и PK — номинальные (табличные) потери холостого хода и короткого замыкания, кВт. Для ТРДНС-25000/35: PХ = 25 кВт; PК = 115 кВт; для ТРДН-25000/110: PХ = 27 кВт; PК = 120 кВт.
cЭх и cЭк — стоимость 1 кВтч потерь энергии холостого хода и короткого замыкания соответственно. Принимают cЭх = cЭк = 50 коп./кВтч.
Т — время работы трансформаторов, ч/год (при его работе круглый год Т = 8760 ч). В рассматриваемом случае, .
Sn — фактическая мощность, протекающая по всем трансформаторам группы, МВА.
Итак, стоимость потерь энергии двух параллельно включенных трансформаторов ТРДНС-25000/35 по формуле (1.1.10), равна:
Стоимость потерь энергии двух параллельно включенных трансформаторов ТРДН-25000/110 по формуле (1.1.10), равна:
Таким образом, все необходимое для расчета приведенных затрат обоих вариантов строительства найдено.
Суммирование производится по элементам системы (линиям, трансформаторам и т. д.). Вариант считается оптимальным, если приведенные затраты минимальны. Если какая-либо составляющая этих затрат входит во все сравниваемые варианты (величина постоянная), она может не учитываться, так как на выбор варианта не влияет.
Далее определяют приведенные затраты по элементам с использованием формулы (1.1.1), но без учета ущерба:
-
приведенные затраты для варианта строительства ВЛЭП на 35 кВ:
-
приведенные затраты для варианта строительства ВЛЭП на 110 кВ:
-
приведенные затраты для варианта строительства подстанции на 35 кВ:
-
приведенные затраты для варианта строительства подстанции на 110 кВ:
В результате, суммарные приведенные затраты для варианта строительства ВЛЭП и подстанции на 35 кВ, равны:
(2.9.17)
В результате, суммарные приведенные затраты для варианта строительства ВЛЭП и подстанции на 110 кВ, равны:
(2.9.18)
Таким образом, суммарные приведенные затраты для варианта строительства ВЛЭП и подстанции на напряжение 35 кВ больше, чем на 110 кВ . В таких случаях, с учетом всех допущений (введение коэффициента перегрузки К = 1,45 и выбор трансформатора ТРДНС – для собственных нужд электростанций) для варианта на напряжение 35 кВ, за рациональное напряжение питания выбирают более высокое напряжение. То есть, для рассмотренного случая, им будет являться напряжение 110 кВ.
Выбор схем распределительных устройств высшего напряжения с учетом надежности
Схемы электрических соединений на стороне высшего напряжения подстанций желательно выполнять наиболее простыми. Учитывая расстояние до системы, уровень надежности потребителей, вид схемы питания и влияние окружающей среды, выбирают следующие две схемы РУ ВН.
а) б)
Рис. 9. Однолинейные схемы электрических соединений главных понизительных подстанций с двумя трансформаторами: а) - без выключателей на стороне высшего напряжения; б) - с выключателями.
Выбор схемы РУ ВН неоднозначен, поскольку с одной стороны установка выключателей на стороне высшего напряжения в связи с дороговизной кажется экономически необоснованной, но с другой стороны применение их в электроснабжении промышленных предприятий приводит к снижению экономических потерь во много раз при авариях и перерывах электроснабжения. Так как в схеме с выключателем время восстановления напряжения значительно ниже, то происходят меньшие нарушения технологического процесса, а так же предотвращается развитие аварий технологических установок. Особенно это важно в нефтеперерабатывающей и химической промышленности, т. к. перерывы в электроснабжении могут привести к значительному экономическому ущербу в технологии.
Достоверность вышесказанного можно подтвердить рассчитав надежность рассматриваемых схем.
Расчет надежности
Для расчета надежности в схему без выключателей на стороне высшего напряжения (рис. 9а) включено большее количество элементов, чем в схему с выключателями (рис. 9б), так как необходимо учитывать все элементы схемы до отключающего элемента, которым для схемы (рис. 9а) является высоковольтный выключатель подстанции системы.
Ремонтная перемычка QS7,QS8 (рис. 9а) и QS5,QS6 (рис. 9б) в нормальном (эксплуатационном) режиме работы не влияет на надежность схемы. Перемычка используется только в периоды ремонта одного из вводов. Поэтому в расчетах надежности она не учитывается.
В соответствии со схемами электроснабжения (рис. 9, а,б) составляют блок-схемы расчета надежности (рис. 10, а,б), заменяя элементы схем распределительных устройств блоками и нумеруя их по порядку.
Затем разделяют полученные блок-схемы на логические расчетные схемы (ЛРС) I, II, III и IV для упрощения расчетов.
а) б)
Рис. 10. Блок-схемы расчета надежности
Сначала рассчитывают надежность для схемы без выключателей на стороне высшего напряжения (рис. 9а).
Показатели надежности элементов схемы представлены в таблице 10.
Так как, рациональным напряжением питания было выбрано 110 кВ, то берут из таблицы 1 параметры элементов с номинальным напряжением 110 кВ. На низкой стороне подстанции рациональное напряжение будет определено технико-экономическим сравнением в расчете системы распределения.
Учитывая, что показатели надежности элементов СЭС на напряжение 6 и 10 кВ одинаковы, то на данном этапе ограничиваются указанием возможных вариантов напряжения системы распределения.
Таблица 10
Показатели надежности элементов СЭС
№ элемента на расчетной схеме | Элементы | а, (1/год) | Т х 10-3, (год) | р, (1/год) | р х 10-3, (год) |
ИП1, ИП2 | Источники питания предприятия | 0 | - | - | - |
1, 3, 5, 7, 9, 11 | Разъединитель 110 кВ | 0,008 | 1,712 | - | - |
2, 8 | Ячейка с воздушным выклю-чателем 110 кВ | 0,18 | 1,256 | 0,67 | 2,28 |
4, 10 | Воздушная линия электропере- дачи 110 кВ на 1 км длины | 0,011 | 0,913 | 1,00 | 2,28 |
6, 12 | Трансформатор силовой 110/6-10 | 0,01 | 20,55 | 1,00 | 2,28 |
13, 14, 15, 16 | Ячейка масляного выключателя 6,10 кВ | 0,035 | 0,26 | 0,67 | 0,91 |
17, 18, 19, 20 | Отходящая линия 6,10 кВ при развитии отказов | 0,012 | 0,114 | - | - |
- | Комплект АВР 6,10 кВ:
| 0,18 0,04 | - - | - - | - - |
- | Неавтоматическое включение резервного питания | - | 0,038 | - | - |
- | Секция шин 6,10 кВ | 0,01 | 0,228 | - | - |
Сначала рассчитывается ЛРС I и II.
-
Определяют показатели аварийных отключений вводов
( ).
Средний параметр потока отказов для I ввода из-за аварийных отключений равен сумме параметров потока отказов элементов I ввода
и параметра потока отказов источника питания I ввода
:
(2.9.19)
Средний параметр потока отказов для II ввода из-за аварийных отключений равен сумме параметров потока отказов элементов II ввода
и параметра потока отказов источника питания II ввода
:
(2.9.20)
Среднее время восстановления напряжения для I ввода после аварийного отключения , равно:
(2.9.21)
Среднее время восстановления напряжения для II ввода после аварийного отключения , равно:
(2.9.22)
2. Показатели аварийных отключений из-за отказов шин ТП или из-за развития отказов со стороны присоединений ( ).
Присоединениями в данном случае являются по две ячейки ( ) с масляным выключателем на каждой секции шин
, а шины ТП образованы низкой стороной трансформатора, то есть число потока отказов шин равно числу потока отказов трансформатора
. Аналогичная ситуация и для длительности восстановления напряжения.
Средний параметр потока отказов и среднее время восстановления напряжения
для I ввода из-за развития отказов со стороны присоединений:
(2.9.23)
(2.9.24)
Средний параметр потока отказов и среднее время восстановления напряжения
для II ввода из-за развития отказов со стороны присоединений:
(2.9.25)
(2.9.26)
3. Показатели аварийных отключений секций шин ( ).
Средний параметр потока отказов и среднее время восстановления напряжения
для I ввода из-за аварийных отключений секций шин, то есть аварийных отключений ввода (
) или развития отказов со стороны присоединений (
):
(2.9.27)
(2.9.28)
Средний параметр потока отказов и среднее время восстановления напряжения
для II ввода из-за аварийных отключений секций шин, то есть аварийных отключений ввода (
) или развития отказов со стороны присоединений (
):
(2.9.29)
(2.9.30)
4. Показатели полных отключений вводов ( ).
Определение показателей (р – отключение для профилакти-ческого ремонта или обслуживания) производится исходя из предположения, что возможности совмещения ремонтов элементов ввода реализованы не полностью. Числовые характеристики плановых ремонтов элементов 1, 2, 3, 4, 5, (7, 8, 9, 10, 11) образуют одну ремонтируемую группу с показателями:
Элемент 1, 3, 5 (7, 9, 11) – разъединитель 110 кВ в ремонтируемую группу не включен, так как его профилактическое обслуживание проводится одновременно с ремонтом воздушной линии электропередач 110 кВ и воздушного выключателя 110 кВ.
Средний параметр потока отказов и среднее время восстановления напряжения
для I ввода из-за аварийных отключений ввода (
) или отключений для профилактического ремонта и обслуживания (
):
(2.9.31)
(2.9.32)
Средний параметр потока отказов и среднее время восстановления напряжения
для II ввода из-за аварийных отключений ввода (
) или отключений для профилактического ремонта и обслуживания (
):
(2.9.33)
(2.9.34)
5. Затем определяются показатели полных отключений секций шин ( ).
Средний параметр потока отказов и среднее время восстановления напряжения
для I ввода из-за аварийных отключений ввода, отключений для профилактического ремонта и обслуживания (
) или развития отказов со стороны присоединений (
):
(2.9.35)
(2.9.36)
Средний параметр потока отказов и среднее время восстановления напряжения
для II ввода из-за аварийных отключений ввода, отключений для профилактического ремонта и обслуживания (
) или развития отказов со стороны присоединений (
):
(2.9.37)
(2.9.38)
Далее переходят к расчету ЛРС III и IV.
Поскольку параметры элементов, составляющих ЛРС III и IV одинаковы и число потока отказов а также время восстановления
расчет будет представлен на примере ЛРС III, для ЛРС IV он идентичен.
6. Показатели аварийных отключений из-за отказов шин ТП или из-за развития отказов со стороны присоединений ( ).
На данном этапе проектирования количество отходящих линий неизвестно, поэтому для упрощения расчетов принимают число присоединений mIII = 1 для обоих секций шин – 3 и 4 (секции шин пронумерованы в соответствии с номерами источников питания (ИП) для данных секций). Показатели надежности для элементов 17 и 18 ЛРС III и для секций шин 6-10 кВ (табл. 10), равны: ,
.
Средний параметр потока отказов и среднее время восстановления напряжения
для 3 секции шин из-за развития отказов со стороны присоединений:
(2.9.39)
(2.9.40)
Средний параметр потока отказов и среднее время восстановления напряжения
для 4 секции шин из-за развития отказов со стороны присоединений:
(2.9.41)
(2.9.42)
7. Показатели надежности отдельных секций шин ТП при сохранении электроснабжения на других – индивидуальные показатели ( ).
Средний параметр потока отказов и среднее время восстановления напряжения
для 3 секции шин из-за отказов ИП (
) с учетом вероятности отказа АВР
или развития отказов со стороны присоединений (
):
(2.9.43)
(2.9.44)
Средний параметр потока отказов и среднее время восстановления напряжения
для 4 секции шин из-за отказов ИП (
) с учетом вероятности отказа АВР
или развития отказов со стороны присоединений (
):
(2.9.45)
(2.9.46)
8. Показатели аварийных отключений секций шин ( ).
Средний параметр потока отказов и среднее время восстановления напряжения
для 3 секции шин из-за отказов ИП (
) или развития отказов со стороны присоединений (
):
(2.9.47)
(2.9.48)
Средний параметр потока отказов и среднее время восстановления напряжения
для 4 секции шин из-за отказов ИП (
) или развития отказов со стороны присоединений (
):
(2.9.49)
(2.9.50)
Показатели полных отключений ввода ( ).
Показатели для данной ЛРС не определяются, так как на вводе схемы элементов нет, а вышерасположенные элементы относятся к I и II ЛРС, при расчете которых ремонтные показатели уже были учтены. Отсюда, показатели надежности полных отключений ввода ЛРС III (
) равны показателям надежности из-за аварийных отключений ввода, которыми в данном случае являются показатели ИП 3 и ИП 4 (
):
10. Показатели полных отключений секций шин ( ).
Так как показатели надежности полных отключений ввода ЛРС III ( ) равны показателям надежности ИП 3 и ИП 4 (
) соответственно, то показатели полных отключений секций шин
равны показателям аварийных отключений секций шин
соответственно:
11. Показатели полного отключения ТП ( ).
Показатели одновременного отказа ИП 3 и 4 секции шин:
(2.9.51)
(2.9.52)
Полное отключение ТП происходит при:
-
аварийном отключении 4 секции шин (аварийное отключение ввода или аварийное отключение из-за отказов шин ТП или из-за развития отказов со стороны присоединений) во время ремонта или аварии на 3 секции шин и наоборот;
-
аварийном отключении из-за отказов шин ТП или из-за развития отказов со стороны присоединений во время аварии или ремонтных работ на вводе 3 секции шин с учетом отказа АВР (то же для 4 секции шин);
-
аварийном отключении 3 или 4 секции шин (аварийном отключении ввода или аварийном отключении из-за отказов шин ТП или из-за развития отказов со стороны присоединений)с учетом ложного срабатывания АВР;
-
отказе обоих источников питания.
Учитывая все вышеперечисленное, показатели надежности полного отключения ТП ( ) равны:
(2.9.53)
(2.9.54)
12. Показатели, характеризующие отказы одной, но любой, секции ТП при сохранении напряжения на другой ( ):
(2.9.55)
(2.9.56)
13. Отказы каждой из секций независимо от работоспособности другой ( ):
(2.9.57)
(2.9.58)
(2.9.59)
(2.9.60)
14. Отказы любого вида ( ):
(2.9.61)
(2.9.62)
15. Вероятность безотказной работы и коэффициент простоя, характеризующие все вышерассмотренные случаи нарушения электроснабжения определяются по формулам (1.3.5) и (1.3.6). Так при отключении секции 3 при сохранении питания 4 секции:
(2.9.63)
(2.9.64)
Результаты расчета сведены в таблицу 11.
Таблица 11
Показатели надежности для схемы с разъединителями (рис. 9а).
Разновидности нарушения электроснабжения | Числовой показатель надежности | |||
|
|
|
| |
Отключение секции 3(5) при сохранении питания 4(6) секции | 0,267 | 0,429 | 0,766 | 0,01310-3 |
Отключение секции 4(6) при сохранении питания 3(5) секции | 0,267 | 0,429 | 0,766 | 0,01310-3 |
Отключение одной из секций [3 или 4 (5 или 6)] при сохранении питания другой | 0,534 | 0,429 | 0,586 | 0,02610-3 |
Отключение секции 3(5) независимо от сохранения питания 4(6) секции | 0,284 | 0,911 | 0,753 | 0,0310-3 |
Отключение секции 4(6) независимо от сохранения питания 3(5) секции | 0,284 | 0,911 | 0,753 | 0,0310-3 |
Отключение секций 3 и 4 (5 и 6) одновременно | 0,017 | 8,41 | 0,983 | 0,01610-3 |
Любое нарушение ЭС | 0,551 | 0,077 | 0,576 | 0,04210-3 |
Теперь определим показатели надежности для схемы с выключателями на стороне высшего напряжения (рис. 9б).
Показатели надежности элементов схемы представлены в таблице 12.
Так как, рациональным напряжением питания было выбрано 110 кВ, то берут из таблицы 1 параметры элементов с номинальным напряжением 110 кВ. На низкой стороне подстанции рациональное напряжение будет определено технико-экономическим сравнением в расчете системы распределения. Учитывая, что показатели надежности элементов СЭС на напряжение 6 и 10 кВ одинаковы, то на данном этапе ограничиваются указанием возможных вариантов напряжения системы распределения.
Таблица 12
Показатели надежности элементов СЭС
№ элемента на расчетной схеме | Элементы | а, (1/год) | Т х 10-3, (год) | р, (1/год) | р х 10-3, (год) |
ИП1, ИП2 | Источники питания предприятия | 0 | - | - | - |
1, 3, 5, 7 | Разъединитель 110 кВ | 0,008 | 1,712 | - | - |
2, 6 | Ячейка с воздушным выклю-чателем 110 кВ | 0,18 | 1,256 | 0,67 | 2,28 |
4, 8 | Трансформатор силовой 110/6-10 | 0,01 | 20,55 | 1,00 | 2,28 |
9, 10, 11, 12 | Ячейка масляного выключателя 6,10 кВ | 0,035 | 0,26 | 0,67 | 0,91 |
13, 14, 15, 16 | Отходящая линия 6,10 кВ при развитии отказов | 0,012 | 0,114 | - | - |
- | Комплект АВР 6,10 кВ:
| 0,18 0,04 | - - | - - | - - |
- | Неавтоматическое включение резервного питания | - | 0,038 | - | - |
- | Секция шин 6,10 кВ | 0,01 | 0,228 | - | - |
Сначала рассчитывается ЛРС I и II.
1. Определяем показатели аварийных отключений вводов.
Средний параметр потока отказов для I ввода из-за аварийных отключений равен сумме параметров потока отказов элементов I ввода
и параметра потока отказов источника питания I ввода
:
(2.9.65)
Средний параметр потока отказов для II ввода из-за аварийных отключений равен сумме параметров потока отказов элементов II ввода
и параметра потока отказов источника питания II ввода
:
(2.9.66)
Среднее время восстановления напряжения для I ввода после аварийного отключения , равно:
(2.9.67)
Среднее время восстановления напряжения для II ввода после аварийного отключения , равно:
(2.9.68)
2. Показатели аварийных отключений из-за отказов шин ТП или из-за развития отказов со стороны присоединений ( ).
Присоединениями в данном случае являются по две ячейки ( ) с масляным выключателем на каждой секции шин
, а шины ТП образованы низкой стороной трансформатора, то есть число потока отказов шин равно числу потока отказов трансформатора
. Аналогичная ситуация и для длительности восстановления напряжения.
Средний параметр потока отказов и среднее время восстановления напряжения
для I ввода из-за развития отказов со стороны присоединений:
(2.9.69)
(2.9.70)
Средний параметр потока отказов и среднее время восстановления напряжения
для II ввода из-за развития отказов со стороны присоединений:
(2.9.71)
(2.9.72)
3. Показатели аварийных отключений секций шин ( ).
Средний параметр потока отказов и среднее время восстановления напряжения
для I ввода из-за аварийных отключений секций шин, то есть аварийных отключений ввода (
) или развития отказов со стороны присоединений (
):
(2.9.73)
(2.9.74)
Средний параметр потока отказов и среднее время восстановления напряжения
для II ввода из-за аварийных отключений секций шин, то есть аварийных отключений ввода (
) или развития отказов со стороны присоединений (
):
(2.9.75)
(2.9.76)
4. Показатели полных отключений вводов ( ).
Определение показателей (р – отключение для профилакти-ческого ремонта или обслуживания) производится исходя из предположения, что возможности совмещения ремонтов элементов ввода реализованы не полностью. Числовые характеристики плановых ремонтов элементов 1, 2, 3 (5, 6, 7) образуют одну ремонтируемую группу с показателями:
Элемент 1, 3 (5, 7) – разъединитель 110 кВ в ремонтируемую группу не включен, так как его профилактическое обслуживание проводится одновременно с ремонтом воздушного выключателя 110 кВ.
Средний параметр потока отказов и среднее время восстановления напряжения
для I ввода из-за аварийных отключений ввода (
) или отключений для профилактического ремонта и обслуживания (
):
(2.9.77)
(2.9.78)
Средний параметр потока отказов и среднее время восстановления напряжения
для II ввода из-за аварийных отключений ввода (
) или отключений для профилактического ремонта и обслуживания (
):
(2.9.79)
(2.9.80)
5. Показатели полных отключений секций шин ( ).
Средний параметр потока отказов и среднее время восстановления напряжения
для I ввода из-за аварийных отключений ввода, отключений для профилактического ремонта и обслуживания (
) или развития отказов со стороны присоединений (
):
(2.9.81)
(2.9.82)
Средний параметр потока отказов и среднее время восстановления напряжения
для II ввода из-за аварийных отключений ввода, отключений для профилактического ремонта и обслуживания (
) или развития отказов со стороны присоединений (
):
(2.9.83)
(2.9.84)
Затем переходят к расчету ЛРС III и IV.
Поскольку параметры элементов, составляющих ЛРС III и IV одинаковы и число потока отказов
а время восстановления
расчет будет представлен на примере ЛРС III, для ЛРС IV он идентичен.
6. Показатели аварийных отключений из-за отказов шин ТП или из-за развития отказов со стороны присоединений ( ).
На данном этапе проектирования количество отходящих линий неизвестно, поэтому для упрощения расчетов принимают число присоединений mIII = 1 для обоих секций шин – 3 и 4 (секции шин пронумерованы в соответствии с номерами источников питания (ИП) для данных секций).
Показатели надежности для элементов 13 и 14 ЛРС III и для секций шин 6-10 кВ (таблица 12), равны:
,
.
Средний параметр потока отказов и среднее время восстановления напряжения
для 3 секции шин из-за развития отказов со стороны присоединений:
(2.9.85)
(2.9.86)
Средний параметр потока отказов и среднее время восстановления напряжения
для 4 секции шин из-за развития отказов со стороны присоединений:
(2.9.87)
(2.9.88)
7. Показатели надежности отдельных секций шин ТП при сохранении электроснабжения на других – индивидуальные показатели ( ).
Средний параметр потока отказов и среднее время восстановления напряжения
для 3 секции шин из-за отказов ИП (
) с учетом вероятности отказа АВР
или развития отказов со стороны присоединений (
):
(2.9.89)
(2.9.90)
Средний параметр потока отказов и среднее время восстановления напряжения
для 4 секции шин из-за отказов ИП (
) с учетом вероятности отказа АВР
или развития отказов со стороны присоединений (
):
(2.9.91)
(2.9.92)
8. Показатели аварийных отключений секций шин ( ).
Средний параметр потока отказов и среднее время восстановления напряжения
для 3 секции шин из-за отказов ИП (
) или развития отказов со стороны присоединений (
):
(2.9.93)
(2.9.94)
Средний параметр потока отказов и среднее время восстановления напряжения
для 4 секции шин из-за отказов ИП (
) или развития отказов со стороны присоединений (
):
(2.9.95)
(2.9.96)
9. Показатели полных отключений ввода ( ).
Показатели для данной ЛРС не определяются, так как на вводе схемы элементов нет, а вышерасположенные элементы относятся к I и II ЛРС, при расчете которых ремонтные показатели уже были учтены. Отсюда, показатели надежности полных отключений ввода ЛРС III (
) равны показателям надежности из-за аварийных отключений ввода, которыми в данном случае являются показатели ИП 3 и ИП 4 (
):
10. Показатели полных отключений секций шин ( ).
Так как показатели надежности полных отключений ввода ЛРС III ( ) равны показателям надежности ИП 3 и ИП 4 (
) соответственно, то показатели полных отключений секций шин
равны показателям аварийных отключений секций шин
соответственно:
11. Показатели полного отключения ТП ( ).
Показатели одновременного отказа ИП 3 и 4 секции шин:
(2.9.97)
(2.9.98)
Полное отключение ТП происходит при:
-
аварийном отключении 4 секции шин (аварийное отключение ввода или аварийное отключение из-за отказов шин ТП или из-за развития отказов со стороны присоединений) во время ремонта или аварии на 3 секции шин и наоборот;
-
аварийном отключении из-за отказов шин ТП или из-за развития отказов со стороны присоединений во время аварии или ремонтных работ на вводе 3 секции шин с учетом отказа АВР (то же для 4 секции шин);
-
аварийном отключении 3 или 4 секции шин (аварийном отключении ввода или аварийном отключении из-за отказов шин ТП или из-за развития отказов со стороны присоединений)с учетом ложного срабатывания АВР;
-
отказе обоих источников питания.
Учитывая все вышеперечисленное, показатели надежности полного отключения ТП ( ) равны:
(2.9.99)
(2.9.100)
12. Показатели, характеризующие отказы одной, но любой, секции ТП при сохранении напряжения на другой ( ):
(2.9.101)
(2.9.102)
13. Отказы каждой из секций независимо от работоспособности другой ( ):
(2.9.103)
(2.9.104)
(2.9.105)
(2.9.106)
14. Отказы любого вида ( ):
(2.9.107)
(2.9.108)
15. Вероятность безотказной работы и коэффициент простоя, характеризующие все вышерассмотренные случаи нарушения электроснабжения определяются по формулам (1.3.5) и (1.3.6). Так при отключении секции 3 при сохранении питания 4 секции:
(2.9.109)
(2.9.110)
Результаты расчета представлены в таблице 13.
Таблица 13
Показатели надежности для схемы с выключателями (рис. 9б)
Разновидности нарушения электроснабжения | Числовой показатель надежности | |||
|
|
|
| |
Отключение секции 3(5) при сохранении питания 4(6) секции | 0,192 | 0,464 | 0,825 | 0,0110-3 |
Отключение секции 4(6) при сохранении питания 3(5) секции | 0,192 | 0,464 | 0,825 | 0,0110-3 |
Отключение одной из секций [3 или 4 (5 или 6)] при сохранении питания другой | 0,384 | 0,464 | 0,681 | 0,0210-3 |
Отключение секции 3(5) независимо от сохранения питания 4(6) секции | 0,202 | 0,797 | 0,817 | 0,01810-3 |
Отключение секции 4(6) независимо от сохранения питания 3(5) секции | 0,202 | 0,797 | 0,817 | 0,01810-3 |
Отключение секций 3 и 4 (5 и 6) одновременно | 0,0095 | 7,499 | 0,991 | 0,00810-3 |
Любое нарушение ЭС | 0,394 | 0,631 | 0,674 | 0,02810-3 |
Таким образом, видно, что вероятность безотказной работы для схемы с выключателями (рис. 9,б) больше, а коэффициент простоя
меньше, чем для схемы с разъединителями на высокой стороне подстанции (рис. 9,а) для всех вышерассмотренных случаев нарушения электроснабжения.
Итак, рассчитав параметры надежности рассматриваемых схем, можно определить среднегодовой ожидаемый ущерб от перерывов электроснабжения, входящий в формулу годовых приведенных затрат.
Среднегодовой ожидаемый ущерб
Как уже отмечалось, среднегодовой ожидаемый ущерб УСГ (руб./год) от нарушения электроснабжения технологических установок определяется с использованием полученных в результате расчета надежности СЭС средних значений параметра потока отказов и времени восстановления электроснабжения для полных и частичных отказов.
Для схемы (рис. 9,а) берут следующие значения среднего параметра потока отказов и времени восстановления электроснабжения для полных и частичных отказов рассматриваемой подстанции соответст- венно:
из табл. 11. Для данных значений и
по графику зависимости полного ущерба от среднего времени восстановления электроснабжения (рис. 4), находят
Следовательно, среднегодовой ожидаемый ущерб для схемы (рис. 9,а) по формуле (1.1.12), равен:
Аналогично, для схемы (рис. 9,б):
из табл. 13. По графику зависимости полного ущерба от среднего времени восстановления электроснабжения (рис. 4):
Следовательно, среднегодовой ожидаемый ущерб для схемы (рис. 9,б) по формуле (1.1.12), равен:
Таким образом, среднегодовой ожидаемый ущерб УСГ от нарушения электроснабжения технологических установок для схемы (рис. 9,б) меньше, чем для схемы (рис. 9,а).
Технико-экономический расчет
Используют ту же методику, что и при определении рационального напряжения питания. Находят приведенные затраты для каждого варианта схем распределительных устройств высшего напряжения (рис 9, а,б).
При определении приведенных затрат на сооружение распределительных устройств высшего напряжения для каждого варианта схем суммирование производится по элементам схем (линиям, трансформаторам и т. д.). Вариант считается оптимальным, если приведенные затраты минимальны. Если какая-либо составляющая этих затрат входит во все сравниваемые варианты (величина постоянная), она может не учитываться, так как на выбор варианта не влияет. В данном случае, не учитывают следующие составляющие: высоковольтные выключатели и разъединители подстанции системы; ВЛЭП, по которой осуществляется питание завода; силовые трансформаторы подстанции. Следовательно, капитальные затраты для схемы (рис 9,а) будет составлять стоимость разъединителей QS5, QS6, а для схемы (рис. 9,б) - стоимость разъединителей QS1 – QS4 и стоимость высоковольтных выключателей Q1 и Q2.
Нормативный коэффициент эффективности капиталовложений для новой техники принимают равным ЕН = 0,15 о.е./год.
Cуммарные издержки на амортизацию и обслуживание силового электротехнического оборудования и распределительных устройств 35-150 кВ [8].
Современная стоимость высоковольтного оборудования была уже определена при выборе рационального напряжения питания. Она составила для высоковольтного воздушного выключателя ВВУ-110Б-40/2000У1 , а для высоковольтного разъединителя РНД(З)-110(Б)(У)/1000У1(ХЛ)
Стоимость потерь энергии сЭ в данном случае не учитывают, так как она одинакова для обоих вариантов.
Отсюда, учитывая найденные ранее значения среднегодового ожидаемого ущерба, рассчитывают приведенные затраты для каждого варианта схем распределительных устройств высшего напряжения по формуле (1.1.1):
Таким образом, с точки зрения ТЭР схема с выключателями на высокой стороне подстанции (рис.9,б) является более выгодной, чем схема с разъединителями на высокой стороне подстанции (рис.9,а), так как приведенные затраты для схемы (рис. 9,б) на меньше, чем для схемы (рис. 9,а).
Заключение
В результате проведения технико-экономического сравнения вариантов схем с учетом надежности электроснабжения потребителей выбирается схема с выключателями на высокой стороне (рис.9,б).
Выбор схемы распределительного устройства низшего напряжения
У
Рис. 11. Схема РУ НН
читывая выбор силового трансформатора с расщепленной вторичной обмоткой мощностью 25 МВА с вторичным напряжением 6-10 кВ, выбирают схему РУ НН, изображенную на рис. 11. Преимущество схемы состоит в том, что она позволяет значительно уменьшить отрицательное влияние нагрузок одной ветви на качество напряжения питания нагрузок другой ветви.
Компенсация реактивной мощности
При реальном проектировании энергосистема задаёт экономически выгодную величину перетока реактивной мощности (Qэкон), в часы максимальных активных нагрузок системы, передаваемой в сеть потребителю.
В дипломном проектировании Qэкон рассчитывается по формуле, где tg ном находится из выражения:
где б -базовый коэффициент реактивной мощности принимаемый для сетей 6-10 кВ присоединенных к шинам подстанций с высшим напряжения 110 кВ, б= =0,5;
k-коэффициент учитывающий отличие стоимости электроэнергии в различных энергосистемах, для Омской энергосистемы: к = 0,8;
dм-это отношение потребления активной мощности потребителем в квартале max нагрузок энергосистемы к потреблению в квартале max нагрузок потребителя, для Омской энергосистемы: dм = 0,7;
Qэкон. = Рр· tgэ =16384.46. ·0,625=10240.3 кВар,
Мощность компенсирующих устройств, которые необходимо установить на предприятии, рассчитываем по выражению:
14707,8- 10240.3 = 4467.5кВар; (18)
Полная мощность предприятия будет равна:
31724,8 кВА . (19)
6. Выбор системы питания
Системы электроснабжения промышленного предприятия условно разделена на две подсистемы – систему питания и систему распределения энергии внутри предприятия.
В систему питания входят питающие линии электропередачи (ЛЭП) и пункт приема электроэнергии (ППЭ), состоящий из устройства высшего напряжения (УВН), силовых трансформаторов и распределительного устройства низшего напряжения (РУНН).
ППЭ называется электроустановка, служащая для приема электроэнергии от источника питания (ИП) и распределяющая её между электроприемниками предприятия непосредственно или с помощью других электроустановок.
Предприятие потребляет значительную мощность, а ИП удален, то прием электроэнергии производится либо на узловых распределительных подстанциях (УРП), либо на главных понизительных подстанциях (ГПП), либо на подстанциях глубокого ввода (ПГВ).
Так как у ПГВ первичное напряжение 35-220 кВ и выполняется по упрощенным схемам коммуникации на первичном напряжении, то в качестве ППЭ выбираем унифицированную комплектную подстанцию блочного исполнения типа КТПБ – 110/6 – 104.
6.1 Выбор устройства высшего напряжения ППЭ
Схемы электрических соединений подстанций и распределительных устройств должны выбираться из общей схемы электроснабжения предприятия и удовлетворять следующим требованиям:
-
Обеспечивать надежность электроснабжения потребителей;
-
Учитывать перспективу развития;
-
Допускать возможность поэтапного расширения;
-
Учитывать широкое применение элементов автоматизации и требования противоаварийной автоматики;
-
Обеспечивать возможность проведения ремонтных и эксплуатационных работ на отдельных элементах схемы без отключения соседних присоединений.
На всех ступенях системы электроснабжения следует широко применять простейшие схемы электрических соединений с минимальным количеством аппаратуры на стороне высшего напряжения, так называемые блочные схемы подстанций без сборных шин.
При выполнении блочных схем подстанции напряжением 35 – 220 кВ следует применить:
-
Схемы «отделитель-короткозамыкатель» при питании предприятия по магистральной линии и «разъединитель-короткозамыкатель» при питании по радиальной линии. В данной схеме отключающий импульс от релейной защиты подается на короткозамыкатель, который создает искусственное короткое замыкание, что приводит к отключению головного выключателя линии. При питании по магистральной линии отделитель во время бестоковой паузы срабатывает, отделяя УВН от линии, и через выдержку времени устройство АПВ на головном выключателе подает на него включающий импульс и линия вновь включается, обеспечивая электроснабжение оставшихся потребителей. При радиальной схеме устройство АПВ на головном выключателе не устанавливается, следовательно, отдельной схемы, при малых расстояниях от подстанции до короткозамыкателя (до 5 км), не рекомендуется из-за возникновения километрического эффекта.
-
Схемы глухого присоединения линии к трансформатору через разъединитель является более дешевой по сравнению с предыдущей, при малых расстояниях. Отключающий импульс в данной схеме подается по контрольному кабелю на головной выключатель.
-
Схемы с выключением на стороне высокого напряжения.
Выбор вида УВН осуществляется на основании технико-экономического расчета (ТЭР).
Наиболее экономичный вариант электроустановки требует наименьшего значения полных при приведенных затрат, которые определяются по выражению:
где ЕН = 0,12 нормативный коэффициент эффективности капиталовложений, руб.
К – капиталовложения в электроустановку, руб.
И – годовые издержки производства, руб/год.
На основании вышеизложенного наметим два варианта и по результатам ТЭР выберем вариант с наименьшими затратами.
Вариант 1 Схема «разъединитель-короткозамыкатель» рис.6.
Вариант 2 Схема «Выключатель» рис. 7.
Вариант 1.
Капиталовложения
Разъединитель РНД3-1б-110/1000
Краз = 4,6 тыс. руб. согласно [7]
Короткозамыкатель КЗ-110У-У1(Т1)
ККЗ = 10,6 тыс. руб. согласно [7].
Стоимость монтажа и материалов 1 км контрольного кабеля в траншее с алюминиевыми жилами сечением 10х2,5 мм2
ККК = 11,3 тыс. руб.
Суммарные капиталовложения:
тыс. руб.
Вариант 2.
Капиталовложения ВВЭ-110Б-16/1000 УХЛ1
КВ = 90 тыс. руб. согласно [7]
Разъединитель РНД3-1б-110/1000
Краз = 4,6 тыс. руб. согласно [7]
Суммарные капиталовложения:
тыс. руб.
2. Издержки на амортизацию и обслуживание.
где Ра – амортизационное отчисление, руб.
Р0 – затраты на электроэнергию, руб.
РР – расходы на эксплуатацию, руб.
Вариант 1
тыс. руб.
Вариант 2
тыс. руб.
3. Полные приведенные затраты
Вариант 1.
тыс. руб.
Вариант 2
тыс. руб.
Окончательно выбираем наиболее надёжную схему УВН ППЭ, т.е. схему «Выключатель» вариант 2.
6.2 Выбор трансформаторов ППЭ
Выбор трансформаторов ППЭ производится по ГОСТ 14209-85, т.е. по расчетному максимуму нагрузки SР, по заводу намечаются два стандартных трансформатора, намечаемые трансформаторы проверяются на эксплуатационную перегрузку.
По суточному графику определяем среднеквадратичную мощность
кВА
Намечаемая мощность трансформатора
В соответствии с тем, что SСК = 28210,67 кВА выбираем трансформатор марки ТРДН – 25000 кВА.
Так как SСР.КВ = 28210,67 кВА < 2SН.Т = 50000 кВА, то проверки на эксплуатационную перегрузку не требуется.
По полной мощности подстанции выбираем трансформатор ТРДН-25000/110.
Определяется коэффициент первоначальной загрузки.
Проверяется трансформатор на аварийную перегрузку, т.е. когда один трансформатор на ППЭ выведен из строя.
Определяем коэффициент загрузки в ПАР
Сравним значение и КМ. Так как
, то принимается
По табл. 2 [4] находим К2 доп
Для n=21 и К = 0,564 К2 доп = 1,4
К2 =1,15 < К2 доп = 1,4 следовательно трансформаторы ТРДН-25000/110 удовлетворяют условиям выбора.
Для ТРДН-25000/110:
РР = 120 кВт; РХХ = 25 кВт; IХХ% = 0,65%; UКЗ% = 10,5%
6.3 Выбор ВЛЭП
Питание завода осуществляется по двухцепной воздушной линии так как завод состоит из потребителей электроэнергии 1,2 и 3 категории. При этом выбирается марка проводов и площадь их сечения. При выборе необходимо учесть потери в трансформаторах.
Для трансформатора ТРДН-25000/110
РР = 120 кВт; РХХ = 25 кВт; IХХ% = 0,65%; UКЗ% = 10,5%
Потери в трансформаторе:
;
кВт;
кВар.
Расчетная полная мощность с учетом потерь в трансформаторах
Принимаются к установке провода марки АС.
Расчетный ток в ПАР
А
Расчетный ток в нормальном режиме.
А
Предварительно принимаем провод сечением FР = 70 мм2 с Iдоп = 265 А табл.1.3.29 [5].
Проверяется выбранное сечение провода по экономической плотности тока:
где IР – расчетный ток в нормальном режиме.
jЭК – экономическая плотность тока. jЭК = 1 А/мм2 по табл. 1.3.36 [5] для Тmax > 5000 ч.
мм2
Выбираем FР = 95 мм2 с Iдоп = 330 А по табл. 1.3.29 [5].
По условиям короны минимальное сечение провода на напряжение 110 кВ составляет 70 мм2, данное условие выполняется.
Проверка по потерям напряжения:
Потери напряжения в линии.
,
где ,
кВт
,
кВар
Сопротивление линии:
Ом
Ом
По потерям напряжения данное сечение также удовлетворяет условиям проверки. Выбранные провода ЛЭП-110 сечением 95 мм2 и Iдоп = 330 А удовлетворяет всем условиям проверки. Окончательно принимаем провода марки АС-95 с Iдоп = 330 А. Опоры железобетонные двухцепные.
7. Выбор системы распределения
В системе распределения завода входят распределительные устройства низшего напряжения ППЭ, комплектные трансформаторные (цеховые) подстанции (КТП), распределительные пункты (РП) напряжением 6-10 кВ и линии электропередач (кабели, токопроводы), связывающие их с ППЭ.
Выбор системы распределения включает в себя решение следующих вопросов:
-
Выбор рационального напряжения системы распределения.
-
Выбор типа и числа КТП, РП и мест их расположения.
-
Выбор схемы РУ НН ППЭ.
-
Выбор сечения кабельных линий и способ канализации электроэнергии.
7.1 Выбор рационального напряжения распределения
Рациональное напряжение распределения определяется на основании ТЭР и для вновь проектируемых предприятий в основном зависит от наличия и значения мощности ЭП напряжением 6кВ, 10 кВ, наличия соответственной ТЭЦ и величины ее генераторного напряжения, а так же Uрац системы питания. ТЭР не проводится в случаях:
Суммарная мощность электроприемников 6 кВ равна или превышает 40% общей мощности предприятия – тогда напряжение распределения принимается 6 кВ.
Суммарная мощность электроприемников 6 кВ не превышает 15% общей мощности предприятия – тогда напряжения распределения принимается 10 кВ.
Суммарная мощность 6 кВ
кВА
На основании этого принимаем напряжение распределения классом UР = 6 кВ.
7.2 Выбор числа и мощности цеховых ТП
Число КТП и мощность трансформаторов на них определяется средней мощностью за смену (SСМ) цеха, удельной плотностью нагрузки и требованиями надежности электроснабжения.
Если нагрузки цеха (SСМi)на напряжении до 1000 В не превышает 150 – 200 кВА, то на данном цехе ТП не предусматривается, и ЭП цеха запитывается с шин ТП ближайшего цеха кабельными ЛЭП.
Число трансформаторов в цехе определяются по:
где SСМ – сменная нагрузка цеха;
SН.Т. – номинальная мощность трансформатора, кВА
- экономически целесообразный коэффициент загрузки.
для 1 – трансформаторной КТП (3 категория) = 0,95-1,0
для 2 – трансформаторной КТП (2 категория) = 0,9-0,95
для 3 – трансформаторной КТП (1 категория) = 0,65-0,75
Коэффициент максимума для определения средней нагрузки за смену находим по:
Средняя нагрузка за смену равна:
Так как выбор мощности цеховых трансформаторов производится с учетом установки компенсирующих устройств, то найдем мощность компенсации и выберем комплектные компенсирующие устройства.
Мощность компенсации:
Средняя реактивная мощность заводского цеха определяется из выражения:
Если нет необходимости устанавливать компенсирующие устройства, то выражение принимает вид:
Полная мощность, приходящаяся на КТП с учетом компенсации реактивной мощности:
Цеховые трансформаторы выбираются по SСМ с учетом Sуд
Удельная мощность цеха:
где F – площадь объекта, м2
При определении мощности трансформаторов следует учесть, что если Sуд не превышает 0,2 (кВА/м2), то при любой мощности цеха мощность трансформаторов не должна быть более 1000 кВА. Если Sуд находится в пределах 0,2-0,3 кВА/м2, то единичная мощность трансформаторов принимается равной 1600 кВА.
Если Sуд более 0,3 кВА/м2, то на ТП устанавливается трансформаторы 2500 кВА.
После предварительного выбора трансформатора в НР и ПАР, а там где есть необходимость с учетом отключения потребителей 3 категории.
Для примера определяется средняя нагрузка цеха №1. Коэффициент использования для цеха №1 КИ = 0,45оэффициент максимума определяется по формуле .
Средняя нагрузка за максимально нагруженную смену определяется по формулам :
кВт
кВар
Определяем полную мощность .
кВА
Поскольку
< 200250 кВА, то на этом объекте КТП не предусматривается, а ЭП будут запитаны с шин ТП ближайшего цеха по кабельной ЛЭП.
Результаты расчетов средних нагрузок за наиболее загруженную смену остальных цехов сведем в табл. 5.
Согласно [6] для компенсации реактивной мощности используются только низковольтные БСК (напряжением до
где QЭ – реактивная мощность, 1000 В)
Qa – мощность потребителей реактивной мощности на шинах 6кВ
Следовательно будем использовать БСК только на 0,4 кВ. Размещение БСК будем производить пропорционально реактивной мощности узлов нагрузки. БСК не следует устанавливать на силовых пунктах, на подстанциях, где мощность нагрузки менее 200 кВар (это экономически нецелесообразно). Величина мощности БСК в том узле нагрузки определяется по выражению (6.2.
где QМ – реактивная нагрузка в i-том узле, кВар;
- сумма реактивных нагрузок всех узлов, кВар.
Таблица 5.
№ | РМ, кВт | QМ, кВар | КС | КИ | КМ | РСМ, кВт | QСМ, кВар | кВА |
1 | 106,85 | 151,993 | 0,5 | 0,45 | 1,11 | 96,1609 | 136,794 | 167,211 |
2 | 761,94 | 905,0594 | 0,4 | 0,3 | 1,33 | 571,456 | 678,795 | 887,313 |
3 | 959,49 | 691,151 | 0,85 | 0,8 | 1,06 | 903,052 | 650,495 | 1112,95 |
4 | 5083,1 | 2960,75 | 0,9 | 0,9 | 1 | 5083,1 | 2960,75 | 5882,51 |
5 | 1850,9 | 1578,422 | 0,6 | 0,5 | 1,2 | 1542,45 | 1315,35 | 2027,14 |
6 | 660,94 | 745,8774 | 0,5 | 0,45 | 1,11 | 594,845 | 671,29 | 896,922 |
7 | 679,41 | 541,7094 | 0,6 | 0,5 | 1,2 | 566,178 | 451,424 | 724,114 |
8 | 251,53 | 213,1886 | 0,6 | 0,5 | 1,2 | 209,611 | 177,657 | 274,77 |
9 | 472,49 | 670,1129 | 0,4 | 0,3 | 1,33 | 354,365 | 502,585 | 614,952 |
10 | 1080,3 | 777,4388 | 0,85 | 0,8 | 1,06 | 1016,73 | 731,707 | 1252,65 |
11 | 609,49 | 684,839 | 0,5 | 0,45 | 1,11 | 548,537 | 616,355 | 825,098 |
12 | 796,19 | 573,037 | 0,6 | 0,5 | 1,2 | 663,489 | 477,531 | 817,468 |
13 | 986,09 | 709,9906 | 0,85 | 0,8 | 1,06 | 928,084 | 668,226 | 1143,62 |
14 | 729,4 | 822,3929 | 0,5 | 0,45 | 1,11 | 656,457 | 740,154 | 989,325 |
15 | 266,81 | 191,3912 | 0,85 | 0,8 | 1,06 | 251,116 | 180,133 | 309,043 |
16 | 411,81 | 296,266 | 0,85 | 0,8 | 1,06 | 387,582 | 278,839 | 477,463 |
17 | 168,29 | 241,6747 | 0,4 | 0,3 | 1,33 | 126,214 | 181,256 | 220,87 |
18 | 255,77 | 251,17 | 0,7 | 0,65 | 1,08 | 237,5 | 233,229 | 332,87 |
19 | 464,76 | 670,2958 | 0,5 | 0,45 | 1,11 | 418,285 | 603,266 | 734,093 |
20 | 183,39 | 261,2078 | 0,4 | 0,3 | 1,33 | 137,54 | 195,906 | 239,366 |
21 | 834,61 | 1544,408 | 0,6 | 0,5 | 1,2 | 695,506 | 1287,01 | 1462,91 |
22 | 229 | 195,0858 | 0,6 | 0,5 | 1,2 | 190,834 | 162,572 | 250,693 |
23 | 160,8 | 135,3157 | 0,6 | 0,5 | 1,2 | 134,004 | 112,763 | 175,136 |
24 | 1235,4 | 1053,099 | 0,6 | 0,5 | 1,2 | 1029,48 | 877,583 | 1352,77 |
25 | 393,63 | 332,3206 | 0,7 | 0,65 | 1,08 | 365,512 | 308,583 | 478,354 |
26 | 499,55 | 358,1306 | 0,85 | 0,8 | 1,06 | 470,164 | 337,064 | 578,503 |
кВар;
кВар
Затем полученные расчетным путем QКi округляются до ближайшего стандартного значения БСК Qi стандартные взятые из [3]. Результаты сведем в табл.6. Типы используемых стандартных БСК приводятся в табл.7.
Таблица 6.
№ | Pсм | QСМ, кВар | QМ, кВар | QКi, кВар | Qi станд, кВар | кВА | Число КТП, Число и мощность тр-ров | КМ | КМ |
1 | 96,1609 | 136,794 | 151,993 | 52,207 | - | 167,211 | 1,11 | 0,55 | |
2 | 571,456 | 678,795 | 905,0594 | 310,873 | 150 | 887,313 | 1КТП 2х250 | 1,33 | 0,66 |
3 | 903,052 | 650,495 | 691,151 | 237,399 | 200 | 1112,95 | 2КТП 2х630 | 1,06 | 0,53 |
4 | 5083,1 | 2960,75 | 2960,75 | 1016,97 | 250 | 5882,51 | 3КТП 2х2500 | 1 | 0,5 |
5 | 1542,45 | 1315,35 | 1578,422 | 542,161 | 250 | 2027,14 | 4КТП 2х630 | 1,2 | 0,6 |
6 | 594,845 | 671,29 | 745,8774 | 256,196 | 100 | 896,922 | 5КТП 2х250 | 1,11 | 0,55 |
7 | 566,178 | 451,424 | 541,7094 | 186,068 | - | 724,114 | 6КТП 2х250 | 1,2 | 0,6 |
8 | 209,611 | 177,657 | 213,1886 | 73,2267 | - | 274,77 | 7КТП 1х250 | 1,2 | 0,6 |
9 | 354,365 | 502,585 | 670,1129 | 230,172 | 240 | 614,952 | 8КТП 1х630 | 1,33 | 0,66 |
10 | 1016,73 | 731,707 | 777,4388 | 267,037 | 1252,65 | 9КТП 2х630 | 1,06 | 0,53 | |
11 | 548,537 | 616,355 | 684,839 | 235,231 | 250 | 825,098 | 10КТП 2х250 | 1,11 | 0,55 |
12 | 663,489 | 477,531 | 573,037 | 302,061 | 150 | 817,468 | 11КТП 2х250 | 1,2 | 0,6 |
13 | 928,084 | 668,226 | 709,9906 | 374,252 | 150 | 1143,62 | 12КТП 2х630 | 1,06 | 0,53 |
14 | 656,457 | 740,154 | 822,3929 | 433,502 | 240 | 989,325 | 13КТП 2х250 | 1,11 | 0,55 |
15 | 251,116 | 180,133 | 191,3912 | 100,887 | - | 309,043 | 14КТП 2х160 | 1,06 | 0,53 |
16 | 387,582 | 278,839 | 296,266 | 156,169 | - | 477,463 | 15КТП2х160 | 1,06 | 0,53 |
17 | 126,214 | 181,256 | 241,6747 | 127,392 | – | 291,4 | 16КТП2х250 | 1,33 | 0,66 |
18 | 237,5 | 233,229 | 251,17 | 132,397 | - | 332,87 | 17КТП 2х160 | 1,08 | 0,54 |
19 | 418,285 | 603,266 | 670,2958 | 353,328 | 150 | 734,093 | 18КТП2х250 | 1,11 | 0,55 |
20 | 137,54 | 195,906 | 261,2078 | 137,7 | – | 315,8 | 19КТП2х250 | 1,33 | 0,66 |
21 | 695,506 | 1287,01 | 1544,408 | 814,092 | 250 | 1462,91 | 20КТП 2х630 | 1,2 | 0,6 |
22 | 190,834 | 162,572 | 195,0858 | 102,834 | 250,693 | 21КТП2х250 | 1,2 | 0,6 | |
23 | 134,004 | 112,763 | 135,3157 | 71,328 | – | 175,136 | – | 1,2 | 0,6 |
24 | 1029,48 | 877,583 | 1053,099 | 555,112 | 100 | 1352,77 | 22КТП 2х630 | 1,2 | 0,6 |
25 | 365,512 | 308,583 | 332,3206 | 175,174 | – | 478,354 | 23КТП 2х160 | 1,08 | 0,54 |
26 | 470,164 | 337,064 | 358,1306 | 188,779 | - | 578,503 | 24КТП 2х250 | 1,06 | 0,53 |
Примечание 1. Для обеспечения наилучшей в данных условиях взаимозаменяемости будем использовать только четыре типоразмера трансформаторов КТП.
Таблица 7. Стандартные БСК
№ | Qi станд, | Тип БСК |
2 | 2х150 | 2хУКБ-0,38-150 УЗ |
3 | 1х200 | 1хУКБН-0,38-200 УЗ |
4 | 4х250 | 4хУКБ-0,4-250-50 УЗ |
5 | 2х250 | 2хУКБ-0,4-250 УЗ |
6 | 2х100 | 2хУКБН-0,38-100- 50 УЗ |
9 | 1х240 | 1хУКБ-0,415-240 УЗ |
11 | 1х250 | 1хУКБ-0,4-250 - 50УЗ |
12 | 2х150 | 2хУКБ-0,38-150 УЗ |
13 | 2х150 | 2хУКБ-0,38-150УЗ |
14 | 2х240 | 2хУКБ-0,415-240 УЗ |
19 | 2х150 | 2хУКБ-0,38-150 УЗ |
21 | 2х250 | 2хУКБ-0,4-250-50 УЗ |
24 | 2х100 | 2хУКБ-0,38-100 - 50 УЗ |
На предприятиях средней и малой мощности для разгрузки кабельных каналов от отходящих линий (от ПГВ до цеховых трансформаторных подстанций) предусматриваются РП.
В данном проекте ЭП на 6 кВ расположены в цехах вместе с ЭП ниже 1000 В, образуя, таким образом, энергоемкий объект, который имеет определенное количество подходящих питающих линий. Учитывая этот фактор, установлен РП на 6 кВ.
7.3 Расчет потерь в трансформаторах цеховых КТП
Для проведения данного расчета в табл. 8 внесем каталожные данные трансформаторов КТП, которые взяты из [3].
Таблица 8.
Тип трансформатора | UК, % | РХХ, кВт | РКЗ, кВт | IХХ, % |
ТМЗ-160 | 4,5 | 0,51 | 2,65 | 2,4 |
ТМЗ-250 | 4,5 | 0,74 | 3.7 | 2,3 |
ТМЗ-630 | 6.5 | 1.68 | 7.6 | 3.2 |
ТМЗ-1000 | 5,5 | 2.45 | 11.0 | 1,4 |
ТМЗ-1600 | 5,5 | 3,3 | 16.5 | 1,3 |
Расчет проводится в следующей последовательности:
– определяются реактивные потери холостого хода.
,
где IХХ – ток холостого хода, %
SНОМ – номинальная мощность трансформатора , кВА.
РХХ – активные потери холостого хода, кВт
– рассчитываются активные потери мощности в трансформаторах
,
где n – число параллельно работающих трансформаторов, шт;
РКЗ - активные потери короткого замыкания, кВт;
– мощность, проходящая через трансформатор, кВА
– находится реактивные потери мощности в трансформаторах;
где UКЗ% - напряжение короткого замыкания, %;
Расчет для КТП цеха №14
кВар
кВА
кВт
кВар
кВар
Результаты расчета для остальных КТП сведем в табл. 9.
Таблица 9.
№ цеха | n x SТР | РМ, кВт | QM.рельн. кВар | SМ, кВА | РТР, кВт | QТР, кВт | Рmax, кВт | Qmax, кВар | Smax, кВА |
1 | 103,444 | 151,993 | 183,83 | 103,44 | 152 | 183.8 | |||
2 | 2х1000 | 740,197 | 755,1 | 1169,2 | 11,6 | 70.1 | 751.8 | 825.2 | 1116.3 |
3 | 2х1000 | 937,437 | 491,15 | 1164,7 | 5,86 | 48.8 | 943.3 | 539.9 | 1086.9 |
4 | 4х1600 | 4972,6 | 2710 | 5786,9 | 23 | 185.2 | 4997.9 | 2895.2 | 5775.9 |
5 | 2х1600 | 1805,81 | 1328,42 | 2398,4 | 16,4 | 144.7 | 1822.2 | 1473.1 | 2343.1 |
6 | 2х630 | 642,598 | 645,88 | 984,51 | 8,6 | 52.2 | 728.6 | 698.1 | 1009.1 |
7 | 2х630 | 663,26 | 541,1 | 855,98 | 6,9 | 41.6 | 670.2 | 582.7 | 888.1 |
8 | 1х250 | 245,415 | 213,18 | 325,5 | 7 | 23.4 | 252.4 | 236.6 | 345.9 |
9 | 1х630 | 457,475 | 430 | 811,3 | 13,7 | 60 | 471 | 490 | 679.6 |
10 | 2х1000 | 1055,45 | 777,43 | 1310,8 | 6,7 | 45.2 | 1062.2 | 822.6 | 1343.5 |
11 | 2х630 | 592,612 | 434,83 | 905,6 | 7,5 | 45.5 | 600.1 | 480.3 | 768.6 |
12 | 2х630 | 777,89 | 423,1 | 966,2 | 8,4 | 50.6 | 786.3 | 473.7 | 917.9 |
13 | 2х1000 | 963,424 | 559,99 | 1196,77 | 9.5 | 128 | 972.9 | 688 | 1191.6 |
14 | 2х630 | 709,167 | 582,4 | 1085,9 | 10,2 | 61.6 | 719.4 | 644 | 965.5 |
15 | 2х250 | 260,686 | 191,3912 | 323,4 | 24 | 15.9 | 263.1 | 207.3 | 335 |
16 | 4х160 | 402,343 | 296,266 | 499,6 | 4,2 | 24.7 | 406.5 | 320.9 | 517.9 |
17 | 2х250 | 162,895 | 241,6747 | 291,4 | 5,6 | 18 | 168.4 | 259.7 | 317.5 |
18 | 2х250 | 249,147 | 251,17 | 353,8 | 2,6 | 15.9 | 251.7 | 267.1 | 367 |
19 | 2х630 | 449,833 | 520,29 | 807,2 | 6,3 | 37.9 | 456.1 | 558.2 | 720.8 |
20 | 2х250 | 177,544 | 261,2078 | 315,8 | 17 | 21,3 | 194.544 | 284,5 | 334.8 |
21 | 2х1000 | 802,603 | 1294,4 | 1740,5 | 9,8 | 73.7 | 812.4 | 1368.1 | 1591.1 |
22 | 2х250 | 223,419 | 195,0858 | 296,6 | 3,0 | 13,8 | 226,42 | 208,88 | 302.6 |
23 | 156,904 | 135,3157 | 207,2 | 156.9 | 135,31 | 207.2 | |||
24 | 2х1000 | 1205,26 | 953,1 | 1600,5 | 8,7 | 63.6 | 1213.9 | 1016.7 | 1583.4 |
25 | 4х160 | 384,069 | 332,3206 | 507,9 | 4,4 | 25.3 | 388.5 | 357.6 | 528 |
26 | 2х630 | 488,082 | 358,1306 | 605,4 | 4,2 | 25.1 | 492.3. | 383.2 | 623.8 |
7.4 Выбор способа канализации электроэнергии
Так как передаваемое в одном направлении мощности незначительны, то для канализации электроэнергии будем применять КЛЭП.
Выбор сечения КЛЭП производится в соответствии с требованиями [5] с учетом нормальных и послеаварийных режимов работы электросети и перегрузочной способности КЛЭП различной конструкции. Кабели будем прокладывать в земле, время перегрузки принимаем равным 5 часам. Допускаемая в течении 5 суток на время ликвидации аварии перегрузка для КЛЭП с бумажной изоляцией составляет 25% [5]. План канализации электроэнергии был намечен ранее и представлен на рис.8.
Кабель выбирается по следующим условиям:
-
По номинальному напряжению.
-
По току в номинальном режиме.
-
По экономическому сечению.
Кабель проверяется по следующим условиям:
-
По току в послеаварийном режиме.
-
По потерям напряжения.
-
На термическую стойкость к токам КЗ.
Выберем кабель от ПГВ до ТП1.
Максимальная активная мощность
кВт
Максимальная реактивная мощность
кВар
Полная мощность
кВА
Расчетный ток кабеля в нормальном режиме
А
Расчетный ток кабеля в послеаварийном режиме
А
Экономическое сечение:
мм2
где экономическая плотность тока jЭ для кабелей с бумажной изоляцией с алюминиевыми жилами при числе часов использования максимума нагрузки в год более 5000 (Тmax = 7662 ч) согласно [5] равны 1,3 А/мм2.
Предварительно принимаем кабель марки ААШ в сечении 35 мм2 с допустимым током Iдоп = 125 А.
Допустимый ток при прокладке кабеля в земле определяется по выражению:
где К1 – поправочный коэффициент для кабеля, учитывающий фактическое тепловое сопротивление земли, нормальной почвы и песка влажностью 7-9%, для песчано-глинистой почвы влажностью 12-14% согласно [5] К1 = 1,0.
К2 – поправочный коэффициент, учитывающий количество параллельно проложенных кабелей в одной траншее из [5].
К3 – поправочный коэффициент, учитывающий допустимую нагрузку кабелей на период ликвидации послеаварийного режима, для кабелей напряжением до 10 кВ с бумажной изоляцией при коэффициенте предварительной нагрузки 0,6 и длительности максимума перегрузки 5 часов согласно [5] К3 = 1,3.
А
А
Перегрузка кабеля:
Проверку на термическую стойкость и по потерям напряжения проводить не будем, так кА не известны ток короткого замыкания и допустимые потери напряжения.
Выбор остальных кабелей сведем в табл.10.
Таблица 10. Выбор кабелей
Наименова-ние КЛЭП | Smax, кВА | А | А | FЭК, мм2 | К1 | К2 | К3 | А | А | Количество, марка и сечение кабеля |
ПГВ-РП1 | 6015,4 | 183,97 | 367,95 | 153,31 | 1 | 0,92 | 1,3 | 340 | 406,64 | 3хААШВ-6-3х185 |
РП1-ТП2 | 1086,9 | 49,862 | 99,725 | 41,552 | 1 | 0,84 | 1,3 | 155 | 169,26 | 2хААШв-6-3х50 |
РП1-ТП7 | 345,9 | 31,737 | 63,474 | 26,447 | 1 | 0,92 | 1,3 | 125 | 149,5 | 1хААШв-6-3х35 |
РП1-ТП5 | 1009,1 | 46,293 | 92,586 | 38,578 | 1 | 0,81 | 1,3 | 125 | 131,625 | 2хААШв-6-3х50 |
РП1-ТП4 | 2343,1 | 107,49 | 214,98 | 89,576 | 1 | 0,81 | 1,3 | 225 | 236,925 | 2хААШв-6-3х95 |
ТП4-СП1 | 183,8 | 16,864 | 33,728 | 14,053 | 1 | 1 | 1,3 | 80 | 104 | 1хААШв-0,4-16 |
ТП7-ТП8 | 679,6 | 62,354 | 124,71 | 51,962 | 1 | 1 | 1,3 | 155 | 201,5 | 1хААШв-6-3х50 |
ТП2-ТП17 | 367 | 16,836 | 33,673 | 14,03 | 1 | 0,92 | 1,3 | 80 | 95,68 | 2хААШв-6-3х16 |
РП1-СД1 | 3332 | 152,86 | 305,72 | 127,38 | 1 | 0,84 | 1,3 | 300 | 327,6 | 2хААШв-6-3х150 |
РП1-СД2 | 2880 | 132,12 | 264,24 | 110,1 | 1 | 0,84 | 1,3 | 260 | 283,92 | 2хААШв-6-3х120 |
ПГВ-ТП11 | 917,9 | 42,109 | 84,219 | 35,091 | 1 | 0,81 | 1,3 | 125 | 131,625 | 2хААШв-6-3х35 |
ПГВ-ТП12 | 1191,6 | 54,666 | 109,33 | 45,555 | 1 | 0,8 | 1,3 | 155 | 161,2 | 2хААШв-6-3х50 |
ПГВ-СД3 | 3166,25 | 145,25 | 290,51 | 121,05 | 1 | 0,8 | 1,3 | 300 | 312 | 2хААШв-6-3х150 |
ТП11-ТП9 | 1343,5 | 61,634 | 123,27 | 51,362 | 1 | 0,92 | 1,3 | 155 | 185,38 | 2хААШв-6-3х50 |
ПГВ-ТП10 | 768,6 | 35,26 | 70,52 | 29,383 | 1 | 0,79 | 1,3 | 125 | 128,375 | 2хААШв-6-3х35 |
ПГВ-ТП1 | 1116,6 | 51,225 | 102,45 | 42,687 | 1 | 0,79 | 1,3 | 155 | 159,185 | 2хААШв-6-3х50 |
ПГВ-ТП15 | 517,9 | 23,759 | 47,518 | 19,799 | 1 | 0,79 | 1,3 | 105 | 107,835 | 2хААШв-6-3х25 |
ПГВ-ТП18 | 720,8 | 33,067 | 66,135 | 27,556 | 1 | 0,79 | 1,3 | 105 | 107,835 | 2хААШв-6-3х25 |
ПГВ-СД4 | 1040 | 47,117 | 95,4 | 23,855 | 1 | 0,79 | 1,3 | 155 | 159,185 | 2хААШв-6-3х50 |
ПГВ-ТП3 | 2887,9 | 132,48 | 264,97 | 110,4 | 1 | 0,92 | 1,3 | 260 | 310,96 | 2хААШв-6-3х120 |
ПГВ-РП2 | 5488,4 | 167,86 | 335,71 | 139,88 | 1 | 0,92 | 1,3 | 300 | 358,8 | 3хААШв-6-3х150 |
РП2-ТП22 | 1583,4 | 72,64 | 145,28 | 60,533 | 1 | 0,75 | 1,3 | 190 | 185,25 | 2хААШв-6-3х70 |
РП2-СД5 | 1614 | 74,043 | 148,09 | 61,703 | 1 | 0,81 | 1,3 | 190 | 200,07 | 2хААШв-6-3х70 |
ТП22-СП2 | 207,2 | 19,011 | 38,022 | 15,842 | 1 | 0,92 | 1,3 | 80 | 95,68 | 1хААШв-0,43х16 |
РП2-ТП19 | 334,8 | 15,359 | 30,718 | 12,799 | 1 | 0,75 | 1,3 | 80 | 78 | 2хААШв-6-3х16 |
РП2-ТП3 | 2887,9 | 132,48 | 264,97 | 110,4 | 1 | 0,75 | 1,3 | 300 | 292,5 | 2хААШв-6-3х150 |
РП2-ТП21 | 302,6 | 13,882 | 27,764 | 11,568 | 1 | 0,8 | 1,3 | 80 | 83,2 | 2хААШв-6-3х16 |
РП2-СД6 | 1250 | 57,345 | 114,69 | 47,787 | 1 | 0,8 | 1,3 | 155 | 161,2 | 2хААШв-6-3х50 |
РП2-ТП16 | 317,5 | 29,131 | 58,262 | 24,276 | 1 | 0,75 | 1,3 | 105 | 102,375 | 1хААШв-6-3х25 |
РП2-ТП24 | 623,8 | 28,617 | 57,235 | 23,848 | 1 | 0,75 | 1,3 | 105 | 102,375 | 2хААШв-6-3х25 |
РП24-ТП23 | 528 | 24,222 | 48,445 | 20,185 | 1 | 0,92 | 1,3 | 105 | 125,58 | 2хААШв-6-3х25 |
РП1-ТП6 | 888,1 | 40,742 | 81,485 | 33,952 | 1 | 0,92 | 1,3 | 125 | 149,5 | 2хААШв-6-3х35 |
РП2-ТП20 | 1591,1 | 72,99 | 145,99 | 60,827 | 1 | 0,92 | 1,3 | 190 | 227,24 | 2хААШв-6-3х70 |
Выбор кабелей для потребителей напряжением 6 кВ рассмотрим на примере ЭД 6 кВ цеха №3. Принимаем, что в цехе установлены четыре ЭД, тогда мощность одного электродвигателя:
кВт
Из [7] выбираем стандартный ЭД:
СДН14-49-6-у3 со следующими параметрами: SН = 833 кВА; РН = 800 кВт; UН = 6 кВ; =0,94. Для остальных цехов выбранные стандартные ЭД представленные в табл. 11.
Расчетный ток нормального режима:
А
Экономическое сечение:
мм2
Выбираем кабель марки ААШ с сечением 70 мм2 с Iдоп = 190 А.
В насосной (цех № 3) устанавливаем двигатели марки СДН14-49-6у3, в количестве четырех штук. Остальные цеха представлены в таблице 11.
Таблица 11.
№ цеха | Тип двигателя | SН, кВА | РН, кВт | UН, кВ | Н, % | | | | | nном, Об/мин | Кол-во, шт. |
3 | СДН14-49-6у3 | 833 | 800 | 6 | 94 | 2,2 | 7,5 | 1,5 | 1,2 | 1000 | 4 |
5 | СДН16-41-12-у3 | 1440 | 630 | 6 | 93,6 | 2,3 | 6,0 | 0,8 | 1,4 | 500 | 2 |
13 | СДН15-34-12-у3 | 633 | 630 | 6 | 93,6 | 2,3 | 5,6 | 1 | 1,1 | 375 | 5 |
19 | СДН16-41-12-у3 | 1250 | 1250 | 6 | 94,6 | 2,2 | 6,0 | 0,8 | 1,4 | 500 | 1 |
22 | СДН14-44-12-у3 | 520 | 500 | 6 | 93,2 | 2 | 5,3 | 0,7 | 1,4 | 375 | 2 |
24 | СДН15-34-12-у3 | 807 | 630 | 6 | 93,6 | 2,3 | 5,6 | 1 | 1,1 | 375 | 2 |
8. Расчет токов короткого замыкания
Токи КЗ рассчитываются на линейных вводах высшего напряжения трансформатора ППЭ (К-1), на секциях шин 6 кВ ППЭ (К-2), на шинах 0,4 кВ ТП4 (К-3). Исходная схема для расчета токов КЗ представлена на рис.9, а схемы замещения на рис.10 для расчета токов КЗ выше 1000 В, на рис. 11 для расчетов КЗ ниже 1000 В.
Расчет токов КЗ в точке К-1 и К-2 проводим в относительных единицах. Для точки К-4 расчет будем проводить в именованных единицах без учета системы, так как система большой мощности и её можно считать источником питания с неизменной ЭДС и нулевым внутренним сопротивлением. Для точки К-2 будем учитывать подпитку от электродвигателей.
Рис. 9. Исходная схема для расчетов токов КЗ
Рис. 10 Схема замещения для расчета токов КЗ выше 1000 В
Рис.11 Схема замещения для расчета токов КЗ ниже 1000 В
Расчет токов короткого замыкания в установках напряжением выше 1000 В имеет ряд особенностей:
-
Активные элементы систем электроснабжения не учитывают, если выполняется условие r<(x/3), где r и x-суммарные сопротивления элементов СЭС до точки К.З.
-
При определении тока К.З. учитывают подпитку от двигателей высокого напряжения.
Расчет токов короткого замыкания производится для выбора и проверки электрических аппаратов и токоведущих частей по условиям короткого замыкания, с целью обеспечения системы электроснабжения надежным в работе электрооборудованием.
Базисные условия: Sб=950 МВА, Uб1=115 кВ, Uб2=6,3 кВ ; Xc=0,6;
Базисный ток определяем из выражения
кА.
кА.
Точка К-1.
Сопротивление воздушной линии, приведенное к базисным условиям
;
Х0-удельное реактивное сопротивление провода, Ом/км.
l-длина линии, км;
Uб- среднее напряжение;
Сопротивления системы до точки К-1
ХК1=Хс+ХВЛ=0,6+0,218=0,818;
Начальное значение периодической составляющей тока в точке К-1:
кА.
Принимаем значение ударного коэффициента kуд=1,8, тогда значение ударного тока
кА.
Где Куд- ударный коэффициент тока К.З. 2.45 [2]по таблице, кА.
I”по(к-1)-начальное действующее значение периодической составляющей, кА.
Точка К-2
Точка К-2 расположена на шинах РУНН ПГВ.
Сопротивление силового трансформатора на ППЭ :
Трансформатор типа ТРДН-25000/110 с расщепленной обмоткойН.Н
.
,
.
К сопротивлениям до точки К-1 прибавляется сопротивление трансформатора.
ХК-2=ХК-1+ХВ +ХН1 =0,818+6,982+0,498=8,3.
Ток короткого замыкания от системы:
кА.
В этой точке необходимо учитывать подпитку тока КЗ от синхронных двигателей.
Определяется сопротивление подпитывающей цепочки.
Сопротивление двигателей и кабельной линии от двигателей цеха № 13 до шин РУНН ПГВ (для двигателей мощностью P =630кВт СДН15-34-12-у3):
F=150 ; l=0,24 км; Х0=0,074 Ом/км; r0=0,206 Ом/км.
;
;
;
где Х”d- сверхпереходное индуктивное сопротивление двигателя.
.
Сопротивление двигателей и кабельной линии от двигателей цеха №19 до шин РУНН ПГВ (для двигателей мощностью P =1250 кВт СДН16-41-12у3):
F=50 ; l=0,209 км; Х0=0,083Ом/км; r0=0,62 Ом/км.
;
;
;
где Х”d- сверхпереходное индуктивное сопротивление двигателя.
.
Сопротивление кабельной линии от ПГВ до РП2.
l=0,256 км; Х0=0,074 Ом/км; r0=0,206 Ом/км.
;
;
.
Сопротивление двигателей и кабельной линии от цеха №24 до РП2 (для двигателей мощностью P =630 кВт СДН15-34-12у3):
F=50 ; l=0,09 км; Х0=0,083 Ом/км; r0=0,62 Ом/км.
;
;
;
где Х”d- сверхпереходное индуктивное сопротивление двигателя.
.
Сопротивление двигателей и кабельной линии от двигателей цеха № 22 до шин РП2 (для двигателей мощностью P =500 кВт СДН-14-41-12у3):
F=50 ; l=0,17 км; Х0=0,083 Ом/км; r0=0,62 Ом/км.
;
;
;
где Х”d- сверхпереходное индуктивное сопротивление двигателя.
.
Сопротивление двигателей и кабельной линии от двигателей цеха №3 до шин РП1 (для двигателей мощностью P =800 кВт СДН-14-49-6у3):
F=150 ; l=0,04 км; Х0=0,074 Ом/км; r0=0,206 Ом/км.
;
;
;
где Х”d- сверхпереходное индуктивное сопротивление двигателя.
.
Сопротивление кабельной линии от ПГВ до РП1.
l=0,213 км; Х0=0,073 Ом/км; r0=0,167 Ом/км.
;
;
.
Сопротивление двигателей и кабельной линии от цеха №5 до РП1 (для двигателей мощностью P =630 кВт СДН15-34-12-у3):
F=120 ; l=0,114 км; Х0=0,076 Ом/км;
r0=0,258Ом/км.
;
;
;
где Х”d- сверхпереходное индуктивное сопротивление двигателя.
.
Производим дальнейшие преобразования:
Эквивалентное сопротивление двигателей и кабельных линий:
Эквивалентное сопротивление :
Ток подпитки от двигателей:
кА.
. тока:
Тогда значение ударного
кА.
Точка К-3
Определяется периодическая составляющая тока короткого замыкания в точке К-3.
;
;
;
;
.
Периодическая составляющая тока короткого замыкания в момент времени t=0 в точке К-3:
кА.
Ток подпитки от синхронного двигателя:
кА.
Полный ток короткого замыкания:
=9,67+9,39=19,1 кА;
Приняв ударный коэффициент kуд=1,4, получаем ударный ток К.З.
кА.
Точка К-4.
Определяется ток К.З.в точке К-4.
Для практических расчетов принято считать, что всё, находящееся выше шин ВН ТП есть система с бесконечной мощностью(Sс=; хс=0).. Расчет производится в именованных единицах для ТП-5
Сопротивление трансформаторов ТМЗ-630/6 таблица 2.50 [2]:
RТ = 3,4 мОм; ХТ = 13,5 мОм;
Д ля определения сечения шинопровода находится расчетный ток в ПАР:
А.
где Ip-расчетный ток в аварийном режиме;
Выбираются шины прямоугольного сечения 100х6 Iдоп=1425А, длина шины 10м.
Сопротивление шин(R0=0,034 мОм/м Х0=0,016 мОм/м):
Rшин=0,34 мОм; Хшин=0,16мОм
Сопротивление автоматического выключателя включает в себя сопротивление токовых катушек расцепителей и переходных сопротивлений подвижных контактов(3): Тип ВА55-43 Iном=1600 А;
Rавт=0,14 мОм; Хавт=0,08 мОм;
Трансформатор тока типа ТПОЛ-1500/5-одновитковый Хтт=0;Rтт=0;
Cопротивление дуги определяется расстоянием между фазами проводников в месте короткого замыкания .Для трансформатора ТМЗ 630/6 Rдуги=7 мОм;
Результирующее сопротивление схемы замещения до точки K-4:
мОм.
Начальное значение тока короткого замыкания:
кА.
Ударный коэффициент :
кА.
Значение токов короткого замыкания по заводу.
Таблица 8
К-1 | К-2 | К-3 | К-4 | |
I”по,кА | 5,83 | 10,49 | 19,1 | 13 |
iуд, кА | 14,8 | 39,4 | 42,92 | 20,08 |
9. Выбор электрических аппаратов
9.1 Выбор аппаратов напряжением 110 кВ
Выберем выключатель 110 кВ
Условия выбора:
-
По номинальному напряжению
-
По номинальному длительному току.
Условия проверки выбранного выключателя.
-
Проверка на электродинамическую стойкость:
-
По удельному периодическому току КЗ
-
По ударному току КЗ
-
Проверка на включающую способность.
-
По удельному периодическому току КЗ
-
По ударному току КЗ
Проверка на отключающую способность
-
По номинальному периодическому току отключения
-
По номинальному апериодическому току отключения
Проверка на термическую стойкость.
Расчетные данные сети:
Расчетный ток послеаварийного режима IР = 165 А был найден в пункте 5.3. по формуле (5.3.4)
Расчетное время
где tРЗ – время срабатывания релейной защиты (обычно берется минимальное значение); в данном случае для первой ступени селективности tРЗ = 0,01 с.
tСВ – собственное время отключения выключателя (в данный момент пока не известно) действующее значение периодической составляющей начального тока КЗ IПО = 5,83 кА было рассчитано в пункте 7.1.;
Периодическая составляющая тока КЗ в момент расхождения контактов выключателя IП в следствие неизменности во времени тока КЗ принимается равной периодической составляющей начального тока КЗ: IП = IПО = кА;
Апериодическая составляющая полного тока КЗ в момент расхождения контактов выключателя определяется по выражению:
и будет определено позже;
расчетное выражение для проверки выбранного выключателя по апериодической составляющей полного тока КЗ:
расчетный импульс квадратичного тока КЗ
будет определено позже.
Согласно условиям выбора из [7] выбираем выключатель ВВЭ-110Б-16/1000 со следующими каталожными данными:
UНОМ = 110 кВ; IНОМ = 1000 А; IН откл = 16 кА; = 25%; iпр СКВ = 67 кА; Iпр СКВ = 26 кА; iН вкл = 67 кА; IН вкл = 26 кА; IТ = 26 кА; tТ = 3 с; tСВ = 0,05 с.
Определяем оставшиеся характеристики:
Расчетное время по формуле :
с
Апериодическая составляющая полного тока КЗ в момент расхождения контактов выключателя по формуле :
кА
Расчетное выражение согласно формуле :
кА
Расчетный импульс квадратичного тока КЗ по формуле :
кА2с
Расчетные данные выбранного выключателя: проверка выбранного выключателя по апериодической составляющей полного тока КЗ
кА
Проверка по термической стойкости:
кА2с
Выбор и проверка выключателя представлен в табл. 13.
Выберем разъединитель 110 кВ
Условия выбора:
-
По номинальному напряжению.
-
По номинальному длительному току.
Условия проверки выбранного разъединителя:
-
Проверка на электродинамическую стойкость.
-
Проверка на термическую стойкость.
Для комплексной трансформаторной подстанции блочного типа КТПБ-110/6-104 тип разъединителя согласно [7] РНД3.2-110/1000 или РНД3-1б-110/1000.
Согласно условию выбора с учетом вышесказанного из [7] выбираем разъединитель РНД3.2-110/1000 У1 со следующими каталожными данными:
UНОМ = 110 кВ; IНОМ = 1000 А; iпр СКВ = 80 кА; IT = 31,5 кА; tТ = 4 с.
Расчетные данные выбранного разъединителя термическая стойкость:
кА2с
Выбор и проверка разъединителя представлены в табл. 13
Таблица 13. Выбор аппаратов напряжением 110 кВ
Условия выбора (проверки) | Данные сети | Выключатель | Разъединитель |
Uсети UНОМ | 110 кВ | 110 кВ | 110 кВ |
IР IНОМ | 116,9 А | 1000 А | 1000 А |
IПО IПР СКВ | 6,21 кА | 26 кА | – |
iуд iпр СКВ | 15,81 кА | 67 кА | – |
IПО IН.вкл | 6,21 кА | 26 кА | – |
iуд iН.вкл | 15,81 кА | 67 кА | 80 кА |
IП IН. откл | 6,21 кА | 26 кА | – |
| 11,43 кА | 28,28 кА | – |
| 4,24 кА2с | 2028 кА2с | 3969 кА2с |
9.2 Выбор аппаратов напряжением 6 кВ
Выберем ячейки распределительного устройства 6 кВ.
Так как РУНН принято внутреннего исполнения будем устанавливать перспективные малогабаритные ячейки серии «К» с выкатными тележками.
Расчетный ток с учетом расщепления вторичной обмотки трансформаторов ППЭ.
Выбираем малогабаритные ячейки серии К-104 с параметрами: UНОМ = 6 кВ; IНОМ = 1600 А; iпр СКВ = 81 кА; IН откл = 31,5 кА; тип выключателя ВК-10.
Выберем вводные выключатели 6 кВ:
Расчетные данные сети:
Расчетный ток ПАР IР = 1046,75 А
Расчетное время = tРЗ +tСВ; = 0,01+0,05 = 0,06 с действующее значение периодической составляющей начального тока КЗ IПО = 9,213 кА было рассчитано в пункте 7.2.
Периодическая составляющая тока КЗ в момент расхождения контактов выключателя:
кА;
Расчетное выражение для проверки выбранного выключателя по апериодической составляющей полного тока КЗ:
кА
Расчетный импульс квадратичного тока КЗ:
кА2с
Выбираем выключатель ВК-10-1600-20У2 со следующими каталожными данными:
UНОМ = 10 кВ; IНОМ = 1600 А; IН откл = 31,5 кА; = 20%; iпр СКВ = 80 кА; Iпр СКВ = 31,5 кА; iН вкл = 80 кА; IН вкл = 31,5 кА; tТ = 4 с; tСВ = 0,05 с
Расчетные данные выбранного выключателя: проверка выбранного выключателя по апериодической составляющей полного тока КЗ:
кА
Проверка по термической стойкости:
кА2с
Выбор и проверка выключателя представлены в табл. 14
Выберем выключатель на отходящей линии 6 кВ
Расчетные данные сети:
Расчетный ток ПАР:
А
Расчетное время = tРЗ +tСВ; = 0,01+0,05 = 0,06 с
Остальные величины имеют те же значения что и для выключения ввода.
Выбираем выключатель ВК-100-630-20У2 со следующими каталожными данными:
UНОМ = 10 кВ; IНОМ = 630 А; IН откл = 20 кА; = 20%; iпр СКВ = 52 кА; Iпр СКВ = 20 кА; iН вкл = 52 кА; IН вкл = 20 кА; IТ = 20 кА; tТ = 4 с; tСВ = 0,05 с
Расчетные данные выбранного выключателя:
кА2с
Выбор и проверка выключателя представлены в табл. 14
Таблица 14. Выбор выключателей 6 кВ.
Условия выбора (проверки) | Данные сети для ввода | Выключатель ввода | Данные сети для отходящей линии | Выключатель отходящей линии |
Uсети UНОМ | 6 кВ | 10 кВ | 6 кВ | 10 кВ |
IР IНОМ | 1046,75 А | 1600 А | 105,03 А | 630 А |
IПО IПР СКВ | 9,213 кА | 31,5 кА | 9,213 кА | 20 кА |
iуд iпр СКВ | 25,02 кА | 80 кА | 25,02 кА | 52 кА |
IПО IН.вкл | 9,213 кА | 31,5 кА | 9,213 кА | 20 кА |
iуд iН.вкл | 25,02 кА | 80 кА | 25,02 кА | 52 кА |
IП IН. откл | 9,213 кА | 31,5 кА | 9,213 кА | 20 кА |
| 20,93 кА | 53,46 кА | 20,93 кА | 33,94 кА |
| 15,28 кА2с | 3969 кА2с | 1528 кА2с | 1600 кА2с |
Выберем трансформаторы тока.
Условия их выбора:
-
По номинальному напряжению.
-
По номинальному длительному току.
Условия проверки выбранных трансформаторов:
-
Проверка на электродинамическую стойкость. (если требуется)
-
Проверка на термическую стойкость.
-
Проверка по нагрузке вторичных цепей.
Расчетные данные сети:
Расчетный ток IР = 1046,75 А
Ударный ток КЗ iуд = 25,02 кА
Расчетный импульс квадратичного тока КЗ ВК = 15,28 кА2с
Согласно условиям выбора их [7] выбираем трансформаторы тока типа ТПШЛ-10 со следующими каталожными данными:
UНОМ = 10 кВ; IНОМ = 1500 А; r2Н = 1,2 Ом; IT = 35 кА; tT = 3 с.
Расчетные данные выбранного трансформатора тока: так как выбран шинный трансформатор тока, то проверка на электродинамическую стойкость не требуется;
Проверка термической стойкости:
кА2с
Трансформаторы тока (ТТ) включены в сеть по схеме неполной звезды на разность токов двух фаз. Чтобы трансформатор тока не вышел за пределы заданного класса точности, необходимо, чтобы мощность нагрузки вторичной цепи не превышала нормальной: r2Н r2. Перечень приборов во вторичной цепи ТТ приведен в табл. 16, схема их соединения – на рис. 12.
Таблица. 15. Приборы вторичной цепи ТТ.
Наименование | Количество | Мощности фаз, ВА | ||||
А | В | С | ||||
Амперметр Э335 | 1 | 0,5 | – | – | ||
Ваттметр Д335 | 1 | 0,5 | – | 0,5 | ||
Варметр Д335 | 1 | 0,5 | – | 0,5 | ||
Счетчик активной мощности СА4У-И672 М | 1 | 2,5 | – | 2,5 | ||
Счетчик реактивной мощности СР4У-И673 М | 2 | 2,5 | – | 2,5 | ||
Итого | 6 | 9 | – | 8,5 |
Наиболее нагруженной является фаза А
Общее сопротивление приборов
где Sприб – мощность приборов, ВА
I2 НОМ – вторичный ток трансформатора тока, А.
Ом
Допустимое сопротивление проводов:
Ом
Минимальное сечение приводов:
где = 0,0286 – удельное сопротивление проводов согласно [3], Ом/м;
lрасч = 50 – расчетная длина проводов согласно [3], м.
мм2
Принимаем контрольный кабель АКРВГ с жилами сечением 2,5 мм2, тогда:
Ом
Полное расчетное сопротивление:
Ом
Выбор и проверка ТТ представлены в табл.16
Таблица 16. Выбор трансформаторов тока
Условия выбора (проверки) | Данные сети для ввода | Каталожные данные |
Uсети UНОМ | 6 кВ | 10 кВ |
IР IНОМ | 1046,75 А | 1500 А |
iуд iдин | 25,02 кА | Не проверяется |
| 15,28 кА2с | 3675 кА2с |
Z2Y r2расч | 1,03 Ом | 1,2 Ом |
Выберем трансформаторы напряжения
Условия их выбора:
1. По номинальному напряжению.
Условия проверки выбранных трансформаторов:
1. Проверка по нагрузке вторичных цепей.
Согласно условиям выбора из [7] выбираем трансформаторы напряжения типа НАМИ-6-66УЗ со следующими каталожными данными: UНОМ = 6 кВ; IНОМ = 1500 А; S2Н = 150 ВА. Схема соединения приборов приведена на рис.13, перечень приборов в табл.17.
Рис.13 Схема соединения приборов
Таблица 17. Приборы вторичной цепи ТН.
Наименование | Количество | Мощность катушки | Число катушек | Полная мощность |
Амперметр Э335 | 4 | 2 | 1 | 8 |
Ваттметр Д335 | 1 | 1,5 | 2 | 3 |
Варметр Д335 | 1 | 1,5 | 2 | 3 |
Частотомер Э 337 | 1 | 3 | 1 | 3 |
Счетчик активной мощности СА4У-И672 М | 6 | 8 | 2 | 96 |
Счетчик реактивной мощности СР4У-И673 М | 2 | 8 | 2 | 32 |
Номинальная мощность трансформатора напряжения НАМИ-6 S2Н = 150 ВА. Расчетная мощность вторичной цепи S2 = 145 ВА. ТН будет работать в выбранном классе точности.
Выберем шины на ПГВ.
Условия их выбора:
-
По номинальному длительному току;
-
По экономическому сечению.
Условия проверки выбранных шин:
-
Проверка на термическую стойкость;
-
Проверка на электродинамическую стойкость.
Расчетный ток IР = 1046,75 А был определен ранее.
Так как это сборные шины, то согласно [5] по экономической плотности тока они не проверятся. Выбираем алюминиевые шины прямоугольного сечения 80х10 с допустимым током Iдоп = 1480 А.
Проверка на термическую стойкость:
ВК = 15,28 кА2с
Минимальное сечение шин:
где с = 95 – термический коэффициент для алюминиевых шин 6 кВ согласно [3], Ас2/мм2
так как Fmin = 41,15 мм2 < F = 800 мм2, то шины термически стойкие.
Проверим шины на механическую стойкость. Для этого определим длину максимального пролета между изоляторами при условии, что частота собственных колебаний будет больше 200 Гц, так как при меньшей частоте может возникнуть механический резонанс:
где W – момент сопротивления поперечного сечения шины относительно оси, перпендикулярной направлению силы, F, м3;
- сила взаимодействия между фазами на 1 м длины при трехфазном КЗ с учетом механического резонанса, Н/м;
ДОП = 70 10 6 – допустимое напряжение в материале для алюминиевых шин [5], Па
- коэффициент равный 10 для крайних пролетов и 12 для остальных пролетов.
Согласно [3] силы взаимодействия между фазами на 1 м длины при трехфазном КЗ с учетом механического резонанса определяется по формуле:
где а – 60 10-3 – расстояние между осями шин смежных фаз для напряжения 6 кВ [3], м;
iуд – ударный ток трехфазного КЗ, А.
По выражению (8.2.5.)
Н/м
Момент сопротивления поперечного сечения шины при растяжении их плашмя определяется по выражению:
где b = 10 10-3 – высота шин, м;
h = 20 10-3 – ширина шин, м.
м3
Длина пролета по формуле (9.2.4.)
м
Вследствие того, что ширина шкафа КРУ 750 мм, и опорные изоляторы имеются в каждом из них, принимаем длину пролета l = 0,75 м.
Максимальное расчетное напряжение в материале шин, расположенных в одной плоскости, параллельных друг другу, с одинаковыми расстояниями между фазами:
МПа
Так как Ф = 17,96 МПа < ДОП = 70 МПа, то шины механически стойкие.
Выберем опорные изоляторы на ПГВ
Опорные изоляторы выбираются по номинальному напряжению и проверяются на механическую прочность.
Допустимая нагрузка на головку изолятора:
где Fразр – разрушающее усилие на изгиб, Н.
Расчетное усилие на изгиб
где Кh – коэффициент учитывающий расположение шин на изоляторе.
При расположении шин плашмя Кh = 1 [3].
Н
Из [7] выбираем опорные изоляторы 40-6-3,75 УЗ со следующими каталожными данными: UНОМ = 6 кВ; Fразр = 3750 Н.
Допустимая нагрузка:
Fдоп = 0,6 Fразр;
Fдоп = 0,6 3750 =2250 Н.
Так как Fдоп = 2250 Н > Fрасч = 1377,2 Н, то изоляторы проходят по допустимой нагрузке.
Выберем проходные изоляторы
Проходные изоляторы выбираются по номинальному напряжению, номинальному току и проверяются на механическую прочность.
Расчетный ток IР = 1046,75 А
Расчетное усилие на изгиб:
Н
Из [7] выбираем проходные изоляторы ИП-10/1600-1250 УХЛ1 со следующими каталожными данными: UНОМ = 10 кВ; IНОМ = 1600 А; Fразр = 1250 Н.
Допустимая нагрузка:
Fдоп = 0,6 Fразр;
Fдоп = 0,6 1250 = 750 Н
Так как Fдоп = 750 Н > Fрасч = 688,6 Н, то изоляторы проходят по допустимой нагрузке.
Выберем выключатели нагрузки
Условия его выбора:
-
По номинальному напряжению.
-
По номинальному длительному току.
Условия проверки выбранного выключателя нагрузки:
-
Проверка на отключающую способность.
-
Проверка на электродинамическую стойкость.
-
По предельному периодическому току.
-
По ударному току КЗ.
-
Проверка на термическую стойкость (если требуется)
Согласно [5] по режиму КЗ при напряжении выше 1000 В не проверяется:
1. аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальный ток до 60 А – по электродинамической стойкости.
Проверку на включающую способность делать нет необходимости, так как имеется последовательно включенный предохранитель.
Расчетные данные сети:
Расчетный ток ПАР IР = 116,9 А был определен ранее при выборе выключателя на отходящей линии;
Действующее значение периодической составляющей номинального тока КЗ IПО = 9,213 кА было рассчитано ранее в пункте 7.2.;
Для КТП-630-81 тип коммутационного аппарата на стороне 6 (10) кВ согласно [7] – выключатель нагрузки типа ВНРу-10 или ВНРп-10.
Согласно условиям выбора с учетом вышесказанного из [7] выбираем выключатель нагрузки ВНРп-10/400-103УЗ со следующими каталожными данными UНОМ = 10 кВ; IНОМ = 400 А; IН откл = 400 А; iпр СКВ = 25 кА; Iпр СКВ = 10 кА; IТ = 10 кА; tТ = 1 с.
IПО = 9,213 кА < Iпр СКВ = 10 кА
Iуд = 25,02 кА < iпр СКВ = 25 кА
IP = 116,9 А < IН откл = 400 А
Выберем предохранитель
Условия его выбора:
-
По номинальному напряжению.
-
По номинальному длительному току.
Условия проверки выбранного предохранителя
1. Проверка на отключающую способность.
Расчетный ток IР = 105,03 А был определен ранее.
Согласно условиям выбора из [7] выбираем предохранитель ПКТ 103-6-160-20УЗ со следующими каталожными данными UНОМ = 6 кВ; IНОМ = 160 А; IН откл = 20 кА;
IПО = 9,213 < IН откл = 20 кА предохранитель по отключающей способности проходит.
9.3 Выбор аппаратов напряжением 0,4 кВ
Выберем автоматический выключатель
Условия выбора:
-
По номинальному напряжению.
-
По номинальному длительному току.
Условия проверки выбранного предохранителя
1. Проверка на отключающую способность.
Ранее в пункте 7.3. был выбран автомат типа АВМ10Нс UНОМ = 0,38 кВ; IНОМ = 1000 А; IН откл = 20 кА.
Проверка на отключающую способность:
Выбранный автомат проходит по условию проверки.
10. Проверка КЛЭП на термическую стойкость
Согласно [3] выбранные ранее кабели необходимо проверить на термическую стойкость при КЗ в начале кабеля.
Проверять будем кабели, отходящие от ПГВ, так как для остальных КЛЭП не известны токи КЗ.
Проверка проводится по условию:
где с = 0,92 – термический коэффициент для кабелей с алюминиевыми однопроволочными жилами и бумажной изоляцией согласно [7], Ас2/мм2;
tотк – время отключения КЗ, с;
а – постоянная времени апериодической составляющей тока КЗ, с;
F – сечение КЛЭП, мм2.
Рассмотрим расчет на примере КЛЭП ПГВ-ТП1
кА
Увеличим сечение до 95 мм2, тогда
кА > IКЗ = 9,213 кА,
что допустимо
Результаты проверки кабелей на термическую стойкость сведем в табл.18.
Таблица 18. Результаты проверки КЛЭП на термическую стойкость.
Наименование КЛЭП | F, мм2 | Iтер, кА | IКЗ, кА |
ПГВ-ТП1 | 70 | 7,2 | 9,213 |
ПГВ-ТП2 | 35 | 3,6 | 9,213 |
ПГВ-ТП3 | 35 | 3,6 | 9,213 |
ПГВ-ТП4 | 35 | 3,6 | 9,213 |
ПГВ-ТП5 | 35 | 3,6 | 9,213 |
ПГВ-ТП6 | 16 | 1,6 | 9,213 |
ПГВ-ТП7 | 70 | 7,2 | 9,213 |
ПГВ-ТП8 | 50 | 5,14 | 9,213 |
ПГВ-ТП10 | 70 | 7,2 | 9,213 |
ПГВ-ТП11 | 50 | 5,14 | 9,213 |
ПГВ-ТП12 | 25 | 2,57 | 9,213 |
ПГВ-ТП13 | 95 | 9,77 | 9,213 |
ПГВ-РП | 240 | 24,69 | 9,213 |
РП-ТП9 | 50 | 5,14 | 9,213 |
РП-ТП14 | 70 | 7,2 | 9,213 |
РП-ТП15 | 10 | 1,3 | 9,213 |
По режиму КЗ при напряжении выше 1 кВ не проверяются:
-
Проводники защищенные плавкими предохранителями не зависимо от их номинального тока и типа.
-
Проводники в цепях к индивидуальным электроприемникам, в том числе цеховым трансформаторам общей мощностью до 2,5 МВА и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:
– в электрической или технологической части предусмотрена необходимая степень резервирования, выполненного так, что отключение указанных электроприемников не вызывает расстройства технологического процесса;
– повреждение проводника при КЗ не может вызвать взрыва или пожара;
– возможна замена проводника без значительных затруднений.
-
Проводники к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются не ответственными по своему назначению и если для них выполнено хотя бы только условие приведенное в пункте 2.2.
В остальных случаях сечение проводников надо увеличить до минимального сечения, удовлетворяющего условию термической стойкости.
1>