150502 (594555), страница 6
Текст из файла (страница 6)
Рисунок 14 - Схема теплоустановки "ЮСМАР-М": 1 - вихревой теплогенератор, 2 - электронасос, 3 - бойлер, 4 - циркуляционный насос, 5 - вентилятор, 6 - радиаторы, 7 - пульт управления и блок автоматики, 8 - датчик температуры.
Как уже говорилось ранее, для теплоснабжения музея предлагается установить два теплогенератора "Юсмар-1М". Первая установка предназначена для отопления зданий музея. Расход горячей воды в системе отопления не подвержен резким изменениям, поэтому потребитель подключается непосредственно к бойлеру теплогенератора (рис.15).
Рисунок 15 - Схема подключения тепловой установки "Юсмар-1М" к системе отопления: 1 - теплоустановка "Юсмар-1М"; 2 - циркуляционный насос; 3 - пульт управления и автоматики; 4 - термодатчик; 5 - радиаторы.
Второй теплогенератор необходим для обеспечения музея-заповедника горячей водой. В этом случае расход воды потребителем колеблется во времени. Поэтому, теплогенератор "Юсмар-1М" подключается к системе горячего водоснабжения не напрямую, а через теплообменник (рис.16).
Рисунок 16 - Схема подключения тепловой установки "Юсмар-1М" к системе горячего водоснабжения: 1 - теплоустановка "Юсмар-1М"; 2 - циркуляционный насос; 3 - пульт управления и автоматики; 4 - термодатчик; 5 - теплообменник; 6 - бак-аккумулятор; 7 - кран горячей воды.
Санитарными нормами установлено, что температура воды, идущей на горячее водоснабжение, должна быть не менее 55˚С. Для того чтобы вода в баке-аккумуляторе 6 нагревалась до этой температуры надо подобрать необходимую площадь поверхности теплообменника 5.
Пусть данный теплообменник выполнен в виде змеевика из латунной трубки, наружный и внутренний диаметры которой равны dВ / dН = 14/16 мм. Рассчитаем необходимую длину этого змеевика.
Расход воды на горячее водоснабжение (нагреваемый теплоноситель) составляет: Gг. в. = 0,530 кг/с; расход воды через змеевик (греющий теплоноситель) принимаем равным G’г. в. =0,720 кг/с (G’г. в. равно расходу воды на отопление).
Объем V бойлера-аккумулятора принимаем исходя из следующего условия: запаса горячей воды в нем должно хватить на бесперебойное снабжение потребителей в течение 8 часов.Т.о.
V = Gг. в. · 8 · 3,6 = 0,53 · 8 · 3,6 15 м3. (4.1)
Отсюда следует: диаметр бака - D = 1,5м; высота бака - L = 2 м.
Температуры греющего теплоносителя: на входе - t11 = 95 °С, на выходе - t12 = 60 °С.
Температуры нагреваемого теплоносителя: на входе - t21 = 20 °С (принимаем из условия, что 1/3 горячей воды возвращается с температурой 50˚С, а 2/3 добавляем из водопровода с температурой 5˚С), на выходе - t22 = 55 °С.
Определим скорости движения теплоносителей в змеевике W1 и в баке-аккумуляторе W2:
(4.2)
(4.3)
(4.4) (4.5)
Для расчета коэффициента теплоотдачи α необходимо знать среднюю температуру воды в змеевике t1СР и в баке-аккумуляторе t2СР:
Для того, чтобы определить режим течения жидкости по змеевику и в баке, найдем числа Рейнольдса, Re1 и Re2 соответственно:
(4.6) (4.7)
Где: ν1 = 0,00000038 м2/с - кинематическая вязкость воды при температуре t1CР;
ν2 = 0,00000049 м2/с - кинематическая вязкость воды при температуре t2CР;
Так как Re1 > 10000 - режим течения воды в змеевике - турбулентный. Коэффициент теплоотдачи от внешней поверхности греющих труб к омывающей их воде α1 в бойлере рассчитывается с использованием уравнения подобия:
(4.8) (4.9)
Где: Pr1=2,55 и Pr1СТ=2,64 - критерии Прандтля при температуре воды t1СР=69,21°С и tСТ = t1СР - 2 = 67,21°С соответственно;
λ1 = 0,686 Вт/м· К - коэффициент теплопроводности воды при t1СР.
Так как скорость течения воды в баке очень мала, можно предположить, что теплообмен между горячим змеевиком и омывающей его водой происходит благодаря свободной конвекции. Она представляет собой обычно подъемное течение, обусловленное подъемной силой, действующей на нагретые на поверхности слои жидкости. Соответственно на холодной стенке устанавливается опускное течение. В качестве безразмерного критерия подобия для свободной конвекции используется число Гразгофа, Gr2
(4.10)
где: L - высота бака-аккумулятора;
g - ускорение свободного падения;
Θ0 - температура наружной поверхности трубы;
V - температура жидкости вне узкой области свободноконвективного движения;
ν - кинематическая вязкость жидкости.
Таким образом, для нашего случая:
(4.11)
Теплоотдачу при свободной конвекции от нагретого змеевика к жидкости можно рассчитать по уравнению:
(4.12) (4.13)
Во всех аппаратах периодического действия происходит нестационарный теплообмен. Уравнение теплопередачи при нестационарном режиме работы имеет вид:
Q = k · F · t · τ, (4.14)
где: τ - время работы аппарата;
t - средний температурный напор за время τ.
Уравнение теплопередачи и теплового баланса для всей поверхности теплообмена F за интервал времени dτ имеет вид:
dQ = kF t dτ = G1c (t11 - t1) dτ = G2c dt2, (4.15)
где: t - средняя разность температур между теплоносителями в момент времени τ;
t1 - текущее значение температуры греющего теплоносителя;
dt2 - изменение температуры нагреваемой воды за время dτ.
Температурный напор t в момент времени τ рассчитывается как среднелогарифмическая разность температур:
(4.16)
Так как температуры t1 и t2 со временем изменяются, то t является функцией времени. Подставляя t в (15), получаем:
(4.17)
откуда:
(4.18) (4.19)
Таким образом, подставляя известные величины, получим:
(4.20)
откуда: kF = 1865Вт/мК. (4.21)
Коэффициент теплопередачи определим по формуле:
(4.22)
Определим площадь поверхности теплообмена F и длину змеевика l:
(4.23) (4.24)
Таким образом из расчета видно, что для обеспечения потребителей горячей водой с температурой tГВ = 55˚С, необходимая длина змеевика теплообменника составляет 37 м. Диаметр змеевика можно принять равным DЗМ = 1,2 м.
4. Экономическая часть
Сравним экономический эффект котельной при ее реконструкции с установкой теплогенераторов фирмы Юсмар и при условии, что будут устанавливаться водогрейные котлы типа ТГ-120 (Гейзер-01), режимная карта которого приведена в таблице 3.
Таблица 3 - Режимная карта на водогрейный котел типа ТГ-120
| Наименование параметров | Тепловые нагрузки,% | |
| 40 | 83 | |
| Производительность, ГДж/час | 0,172 | 0,343 |
| Давление воды на котле, МПа | 0,14 | 0,155 |
| Давление воды до котла, МПа | 0,17 | 0, 19 |
| Низшая теплота сгорания газа, кДж/м3 | 33513 | 33513 |
| Число газовых горелок, шт | 1 | 1 |
| Давление газа перед котлом, МПа | 20 | 16 |
| Разрежение за котлом, мм в. ст. | 0,5 | 1,5 |
| Температура уходящих газов, °С | 95 | 145 |
| Состав уходящих газов,%: СО2 О2 | 4,4 13,2 | 4,4 13,2 |
| Расход газа на котел, м3/час | 5,7 | 11,8 |
| Коэффициент избытка воздуха | 2,51 | 2,51 |
| Потери тепла,%: с уходящими газами в окружающую среду | 6,60 2,5 | 10,98 2,7 |
| КПД | 90,90 | 86,32 |
| Удельный расход топлива, м3/ГДж | 139,0 | 143,9 |
| Удельный расход условного топлива, кг/ГДж | 159,0 | 164,5 |
Определение себестоимости вырабатываемого тепла находится по выражению:
(5.1)
где ΣЭ - годовые эксплуатационные затраты в руб.;
Qгод - годовой отпуск тепла в ГДж.
Годовой отпуск тепла подсчитывают по формуле:
(5.2)
где Q = 0,66ГДж/час - производительность котельной в час;
m = 220 - количество дней отопительного периода;
tв = +18˚С - внутренняя температура в помещении;
tср = - 2,6˚С - наружная средняя температура отопительного периода;
tно = - 27˚С - наружная температура для проектирования системы теплоснабжения;
Годовые эксплуатационные затраты определяют по уравнению:
ΣЭ=Этоп+Ээл. эн. +Эвод+Эзар+Эамор+Этек. рем. +Эобщ. расх., руб/год (5.3)
где: Этоп - затраты на топливо;
Ээл эн - затраты на электроэнергию;
Эвод - затраты на используемую воду;
Эзар - затраты на заработную плату;
Эамор - амортизационные отчисления;
Этек. рем - затраты на текущий ремонт;
Эобщ. расх - затраты общекотельные и прочие расходы.
Определим затраты на эксплуатацию котлов ТГ-120.
1 затраты на топливо:
Этоп = kпот · B · hгод · Стоп, руб/год (5.4)
где kпот = 1,055 - коэффициент, учитывающий складские, транспортные и прочие потери; В = 11,8 м3/ч - часовой расход топлива на один котел при максимальной нагрузке; n =2 - количество установленных котлов (без резервных); hгод - число часов использования установленной мощности котельной в год: hгод = 24 · тот +24 · тг. в. = 8760часов, где тот - количество дней отопительного периода; тг. в. - количество дней летнего периода;
Стоп = 49коп/м3 - стоимость газа;
Этоп = 1,055 · (11,8 · 2 · 220 + 11,8 · 145) · 24 · 0,49 = 85644 руб/год, (5.5)
2 затраты на потребляемую электроэнергию:
Ээл. эн = N · hгод · Сэл. эн. руб/год, (5.6)
где N - установленная мощность электродвигателей в кВт:
Nот = 5,5кВт - мощность электродвигателя насоса системы отопления,
Nг. в. = 4,5кВт - мощность электродвигателя насоса системы горячего водоснабжения;
hгод - число часов использования установленной мощности котельной в год:















