150360 (594536), страница 4

Файл №594536 150360 (Исследование влияния частоты переменного электрического поля на яркость люминесценции различных люминофоров) 4 страница150360 (594536) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Свойства ФЭЛ изучались как на электро-, так и фото­люминофорах различного состава и вида (порошки, моно­кристаллы, пленки)[40-42]. В частности, кривые Вфэл (V), сходные по форме с приведенными на рис. 6, были получены для пленок ZnS:Mn [43].

При включении или выключении поля наблюдаются различного рода переходные явления. Так, если люмино­фор в обычной ячейке возбуждается ультрафиолетовым светом, то включение небольшого переменного напря­жения приводит сначала к вспышке (эффект Гуддена и Поля), затем к временному значительному тушению и, далее, к постепенному уменьшению тушения до стационарного уровня. Выключение напряжения вновь может сопровождаться вспышкой с последующим отно­сительно медленным восстановлением первоначальной яр­кости ФЛ.

В дальнейшем рассматриваются основные свойства установившегося свечения при двойном возбуждении люминофоров переменным полем и ультрафиолетовым светом (365 нм), причем имеется в виду средняя по вре­мени яркость свечения. Данные о тушении и усилении свечения относятся к одним и тем же порошкообразным электролюминофорам, что позволяет сопоставить свойства трех явлений, связанных с действием поля и облегчает рассмотрение вопроса о происхождении этих явлений.

      1. Тушение фотолюминесценции полем

В работах [40-42] исследовано тушение фотолюминесценции об­разцов ZnS:Сu с зеленым свечением (ЭЛ-510 и ФК-106). Слои порошкообразных люминофоров толщиной 30-­50 мкм находились во время измерений в вакууме. Об­щий вид зависимости Вфэл от напряжения V был одина­ковым как для электро-, так и фотолюминофора, хотя для последнего значения V, при которых появлялась замет­ная ЭЛ, увеличивались примерно в 10 раз. В минимуме кривой Вфэл на рис. 6 ΔВфл составляет обычно несколько процентов от величины Вфл.

Зависимость абсолютной величины тушения ΔВфл от напряжения V приведена на рис. 7.

В области малых V и в области более высоких V, в которой наблюдается одновременно небольшая ЭЛ и гашение фотолюминесценции, величины ΔВфл и Вэл подчиняются одной и той же эмпирической зависимости:

В~ехр (-bкV-1/2)

хотя величина bк для случая тушения в несколько раз меньше, чем в случае ЭЛ. Кроме того, частотные зависимости этого параметра также сходны в обоих случаях. Это позволяет предположить, что основные механизмы действия поля при тушении ФЛ и возбуждении ЭЛ одинаковы. Так как ЭЛ в этих образцах возбуждается ускоренными носителями тока, то и тушение может быть связано с тем же основным процессом. Малая величина bк отражает тогда пере­ход электронов через меньший энергетический интервал. По мере старения образцов с течением времени ΔВфл и Вэл уменьшаются одинаковым образом [43].

Посколь­ку ЭЛ возбуждается в малых областях кристаллов, соот­ветствующих энергетическим барьерам, то и тушение ФЛ происходит, очевидно, преимущественно в тех же областях кристаллов. Исходя из предыдущего и допуская наиболее простую схему внешнего тушения ФЛ, можно принять следующую упрощенную модель явлений [43, 44]. В местах концентрации поля в кристаллах (например, поверхностных барьерах) при малых V возможны переходы валентных электронов на уровни центров свечения, освобожденные светом.

В более общем случае следует учитывать одновременно тепловое и полевое освобождение дырок из центров све­чения и исходить из решения кинетических уравнений, относящихся как к барьерной области кристалла, так и его объему. Получаемое таким путем выражение для ΔВ правильно описывает наблюдающиеся зависимости ΔВ от напряжения, интенсивности освещения и температуры [45]. Если в области низких температур Iф >> Iт, то кривая ΔВ (Т) также может иметь максимум, так как при неизменном токе повышение Т способно привести к увеличе­нию Vо из-за возрастания концентрации электронов в объеме кристалла вследствие перераспределения потоков рекомбинации через центры излучения и тушения. В об­ласти более высоких Т, когда Iт> Iф, Vо будет вновь уменьшаться, как и в рассмотренном ранее случае сла­бого освещения.

Следует заметить, что для люминофоров других типов получаются в целом те же по форме характеристики га­шения, что и упоминавшиеся выше. Например, температурная зависимость тушения с максимумом наблюда­лась также для люминофоров типа ZnS:Рb. Частот­ные зависимости ΔВфл, имеющие для образцов ЭЛ-510 вид кривых с насыщением у частот порядка нескольких килогерц, характерны как для других образцов ZnS:Cu [46, 47], так и фотолюминофоров ZnS:Pb. В последнем случае максимум ΔВфл (f) перемещался к малым f при уменьшении напряжения, как это наблю­дается и для Вэл. Частотная зависимость тушения имеет, по-видимому, то же происхождение, что и при ЭЛ, возбуждаемой прямоугольными импульсами хотя поляризация кристаллов и снижение внутреннего поля происходит здесь вследствие накопления неравновесных носителей, созданных нe полем, а светом.

      1. Изменение электролюминесценции при освещении

Из рисунка 6 следует, что начиная с определенных напряжений, наблюдается рост яркости, т. е. появляются процессы, приводящие к усилению свечения при одно­временном действии света и поля. При этом измеренное ΔВ=ΔВфл+ΔВэл проходит через нуль и становится положительным. Свойства добавочного свечения имеет смысл, очевидно, рассматривать и сравни­вать со свойствами самой ЭЛ только в том случае, если ΔВэл отсчитывается от уровня фотолюминес­ценции при тех же напря­жениях. Для ряда образ­цов, особенно при подоб­ранных условиях возбуж­дения (высокие V), ΔВфл мало и практически все добавочное свечение обусловлено изменением ЭЛ (ΔВ≈ΔВэл). В других случаях необходимо вводить поправку на гашение ФЛ. Если усиление и ос­лабление свечения наблю­дается в одной спектраль­ной области, то разделить их при больших V невоз­можно, поэтому приходит­ся прибегать к экстрапо­ляции кривых ВФЛ (V) в область больших напряжений.

Нa рис. 8 приведены зависимости от напряжения как добавочного свечения, так и самой ЭЛ. Введение поправки на тушение сближает наклоны прямых доба­вочного свечения и ЭЛ. То, что Δ1 подчиняется эмпири­ческому закону, справедливому для ЭЛ, свидетельствует о сходстве механизмов возбуждения полем в обоих слу­чаях. Так как свет, способный вызвать ФЭЛ, увеличи­вает электропроводность люминофора, естественно пред­положить, что добавочное свечение связано с носителями, освобожденными при поглощении света. В этом случае первоначальный ток, входящий в барьеры, равен сумме темнового и фототока (Iо=Iт+Iф) и яркость Вфэлфл~I0 (М-1), где М - коэффициент умножения. При слабом освещении, когда IФ мал по сравнению с Iт, напряжение V0 почти не изменяется и ЭЛ, входящая в состав фотоэлектролюминесценции, примерно такова же, как и без освещения. В этом случае наклоны зависи­мостей ln В от V-0,5 для ΔВэл и Вэл должны быть оди­наковы (рис. 8). При сильном освещении (Iф>>Iт) ионизация и свечение соответствуют новым (сниженным) значениям Vo и наклон для ΔВэл может отличаться от наклона кривых яркости ЭЛ. В этом случае имеет смысл рассматривать изменение наклона величины Δ2фэлфл, которая соответствует ЭЛ, связанной как с темновыми, так и фотоносителями. Увеличение интенсивности освещения Ф отвечает тогда росту пара­метра I1R и должно привести к появлению зависимости наклона кривых Δ2 от Ф с минимумом. Опытная зависимость наклона от Ф имеет такой же вид [46-48].

Таким образом, изменения тока через кристаллы и падения напряжения в объеме кристаллов I1R, от кото­рого зависит наклон b1 зависимости ln В от V-0,5, могут быть получены различными способами: изменением тем­пературы интенсивности облучения и размера кристаллов d. При этом кривые b1 (Т), b1(Ф) и b1(d) имеют одну и ту же форму [46-48].

Для люминофоров с синим (ЭЛ-460) и желтым (ЭЛ-580) свечением ΔВэл также подчиняется эмпирической зависимости от напряжения, характерной для ЭЛ порошков, имеющих обычное распределение зерен по раз­мерам. То же наблюдалось для порошков (Zn,Сd)S:Мn, возбуждаемых рентгеновскими лучами [49] и для моно­кристаллов сульфида цинка, облучаемых γ-радиацией [50]. Можно, следовательно, сделать заключение, что добавочное свечение ΔВэл действительно связано с доба­вочной ЭЛ, обусловленной новыми носителями, создан­ными светом или другим способом и попавшими в об­ласти сильного поля в кристаллах. В пользу этого выво­да говорит также сходство зависимостей ΔВэл и Вэл от частоты и параллельное изменение обеих величин при старении образцов. Если ФЛ данного образца располагается в одной спектральной области, а ЭЛ - в другoй, то спектр ΔВэл близок те спектру именно ЭЛ. Схема процессов, включающая ударную ионизацию в поверхностных барьерах и оказавшаяся ранее пригодной для расчетов отдельных характеристик средней яркости ЭЛ, может быть применена и для вычисления характеристик [43, 48].

Кривые на рис. 9 представляют собой рассчитанные зависимости яркости ЭJI от параметра I1R (I1 - ток через кристалл при V0 = 1 В, когда нет умно­жения, а R - сопротивление толщи кристалла) и отно­сящиеся к случаю I1 ~(I1R)2. Как уже отмечалось, для кристаллов с малой концентрацией темновых носителей можно принять, что R~Ф-1/2, (вероят­ность рекомбинации фотоносителей увеличивается с рос­том их концентрации), обратный ток барьеров при осве­щении I1~Ф, поэтому I1R~Ф1/2, а I1~(I1R)2, т. е. условия, принятые при вычислении кривых на рис. 9, соответствуют условиям, существующим в кристаллах при освещении.

Если при комнатной температуре большенство зерен люминофора характеризуется величиной I1R = 1 В, то вертикальная линия АС на рис. 9 соответствует состоянию люминофора в темноте. Для верхней кривой (V = 20 В на одном зерне) яркость в темноте отвечает точке D. Дальнейшее увеличение яркости может быть достигнуто освещением, т. е. увеличением I1R. При этом добавочную яркость ΔВэл можно получить отсчетом ее от горизонтальной линии DF. Как следует из рис. 9, величина ΔВэл может быть и отрицательной, если осве­щение велико (для верхней кривой переход к отрицательному ΔВэл наступает при I1R > 4 В). Таким же образом можно получить ΔВэл и для других напряжений на кристаллах. При данном I1R, т. е. определенной ин­тенсивности освещения, изменением только V можно получить переход от отрицательного ΔВэл к положи­тельному (например, повышая V от 13 до 20 В при I1R=3 В). Подобные свойства добавочного свечения неоднократно наблюдались на опыте. Так как I1R~√Ф, то для удобства сравнения с теоретическими зависимостя­ми ΔВэл(I1R) опытные данные приведены в зависимости от √Ф. Толщина слоя люминофора (на­ходившегося в вакууме) составляла примерно 60 мкм, а средний размер зерен - 6 мкм, поэтому напряжению на одном зерне соответ­ствует удесятеренное значение напряжения. Опытные кривые ΔВ (Ф) были получены Патеком для других образцов из наблюдений волн яркости фотоэлектролюми­несценции [51].

Таким образом, основные свойства добавочного свечения в типичных электролюминесцирующих образцах сульфида цинка могут быть поняты на основе той же схемы явлений, которая описывает свойства самой ЭЛ. Возможно, что в других образцах могут осуществляться иные механизмы усиления свечения. В неэлектролюминесцирующих кри­сталлах, например, усиление ФЛ в присутствии поля может быть связано со сдвигом рекомбинационного равновесия в сторону увеличения вероятности излучательных переходов.

Подобная возможность рассматривалась Мейтосси, предполагавшим что помимо заполнения электронами под действием поля свободных центров свечения возмож­ны и другие способы увеличения числа безызлучательных рекомбинаций (например, отвод носителей в область, где вероятность таких переходов велика) или их уменьшения (освобождение полем уровней, с которых происходят переходы без излучения). Даже при отсутствии допол­нительных переходов, связанных с действием поля, периодические изменения концентрации электронов в разных областях кристалла (переменное напряжение) могут изменить соотношение между излучательными и безызлучательными переходами, если они по-разному зависят от концентрации носителей.

Присутствие на поверхности кристалла изгиба энер­гетических зон само по себе может влиять на величину стационарной фотолюминесценции приповерхностного слоя, так как поле изменяет степень заполнения локальных уровней и ту долю рекомбинаций в области объемного заряда, которая происходит с излучением.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7023
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее