150360 (594536), страница 3
Текст из файла (страница 3)
При одновременном действии возбуждающего света и инфракрасных лучей на цинксульфидные люминофоры при комнатной температуре имеет место только эффект тушения люминесценции, который тем больше, чем меньше интенсивность возбуждающего света. Коэффициент тушения увеличивается при повышении интенсивности инфракрасных лучей до известных пределов. Заметное влияние на величину коэффициента тушения оказывает также концентрация активатора и присутствие в люминофоре примесей некоторых металлов (никеля, кобальта, железа) так называемых гасителей люминесценции, введение которых приводит к значительному (особенно при добавлении кобальта) увеличению коэффициента тушения. Повышение концентрации активатора обычно приводит к ослаблению эффекта тушения.
Вспышка у цинксульфидных люминофоров при одновременном действии инфракрасных лучей и возбуждающего света наблюдается только при низкой температуре. При обычных температурах у этих люминофоров вспышка имеет место в том случае, если люминофор подвергается действию инфракрасных лучей после прекращения возбуждения (в процессе затухания). Интенсивную вспышку в этом случае можно получить, если в люминофор ZnS:Рb ввести медь. Спектр излучения вспышки у люминофора ZnS:Сu,Рb совпадает с излучением полосы свинца в этом люминофоре. Введение меди увеличивает эффект стимуляции и в случае люминофора ZnS:Mn. Предполагается, что медь может служить источником электронов, запасаемых на ловушках, образованных свинцом [30]. Люминофоры, которые дают наиболее интенсивную вспышку при облучении их инфракрасными лучами после прекращения возбуждения, относятся к классу сульфидов щелочноземельных металлов, активированных редкоземельными элементами [30]. Эти люминофоры, называемые обычно вспышечными, нашли широкое применение в ряде специальных приборов (дозиметры, приборы ночного видения и т. д.). К вспышечным люминофорам относятся, например, SrS:Се,Sm, SrS:Еu:Sm, а также SrS-CaS:Еu,Sm. Спектр вспышки определяется Се или Еu, а введение Sm увеличивает интенсивность вспышки и определяет спектр стимуляции, т. е. зависимость интенсивности вспышки от длинны волны инфракрасного света.
Явления вспышки и тушения люминесценции при действии инфракрасных лучей имеют различное толкование. В самом общем виде явление вспышки объясняется тем, что под действием инфракрасных лучей электроны, находящиеся на ловушках, могут перейти в зону проводимости и затем рекомбинировать с центрами люминесценции. Тушение люминесценции происходит тогда, когда энергия инфракрасных лучей оказывается достаточной. для переноса электрона из валентной зоны на уровни ионизованных активаторов. Это приводит к уничтожению. положительного заряда на уровнях активатора и, следовательно, к уменьшению числа переходов, сопровождающихся излучением света. Дырки, образовавшиеся в валентной зоне, могут перемещаться в ней и переходить на уровни активатора. Введение Со, Ni и Fe способствует образованию дополнительных уровней захвата. Рекомбинация электронов на этих уровнях с дырками из валентной зоны уменьшает вероятность перехода дырок на уровни активатора. Этим объясняется усиление эффекта тушения при введении в люминофор Со, Ni и Fe [31].
Электрическое поле, приложенное к фотолюминесцирующему материалу, подобно инфракрасному излучению способно вызывать вспышку, либо тушение фотолюминесценции.
Процесс одновременного действия на фотолюминофор электрического поля и возбуждающего излучения называется электрофотолюмЀнесценцией.
-
ЭЛЕКТРОФОТОЛЮМИНЕСЦЕНЦИЯ
1.4.1. Эффекты Гуддена - Поля и Дэшена
Давно известно, что приложение сильных электрических полей (постоянных или переменных) может существенно повлиять на поведение фотолюминесцирующих материалов, возбуждаемых ультрафиолетовым светом. Эти эффекты можно наблюдать и во время периода затухания, следующего за прекращением действия возбуждающего света; первоначально они были обнаружены именно таким образом. В самых общих чертах различают усиление интенсивности света при наложении поля, называемое эффектом Гуддена - Поля, и гашение, именуемое эффектом Дэшена. Эффект Гуддена - Поля можно наблюдать, когда фосфор надежно изолирован от металлических электродов, к которым прикладывается поле, в то время как для эффекта Дэшена, по-видимому, более благоприятны такие условия, когда через фосфор проходит ток заметной величины. Прикладываемые поля должны иметь напряженность порядка нескольких киловольт на сантиметр. Оба эффекта могут наблюдаться совместно, причем эффект Гуддена - Поля обычно характеризуется меньшими постоянными времени.
На рис 5(a) показан суммарный эффект, который может наблюдаться в том случае, когда приложенное поле постоянно.
Относительная четкость различных деталей может довольно сильно изменяться от образца к образцу. В случае переменного, поля на кривую яркости света накладывается пульсация, которая, как правило, имеет сложную форму. При достаточно больших напряженностях поля частота этой пульсации вдвое больше частоты поля. Пунктирная кривая соответствует случаю, когда эффект Дэшена отсутствует. Обычно в тот момент, когда выключается внешнее поле, происходит небольшое усиление, но в некоторых случаях его нельзя заметить. Этот частный вид релаксации может быть очень быстрым, как наблюдалось, например, для одного из фосфоров, изучавшихся Штейнбергером, Лоу и Александером [32].
Детали этих эффектов сложным образом связаны как с напряженностью и характером поля, так и с интервалом времени между моментом его включения и началом оптического возбуждения.
На рис. 5(б) показано, например, как в течение затухания фотолюминесценции уменьшается величина световых импульсов в эффекте Гуддена - Поля. Перед началом основного спада наблюдается интересное и трудно объяснимое увеличение яркости, которое может служить, одним из примеров сильно усложненных и взаимосвязанных свойств этого явления. В магнитном поле соответствующие эффекты не наблюдались [33].
Как известно, процессы затухания в возбужденных фосфоресцирующих материалах могут быть ускорены инфракрасным излучением. При этом суммарное количество излучаемой световой энергии остается постоянным независимо от того, ускоряется ли процесс затухания или происходит спонтанно. Рассматриваемые же эффекты принципиально отличаются от подобного ускоренного оптическим путем затухания, поскольку при наличии электрического поля величина интеграла по времени от выходящей световой энергии может существенно измениться. Например, при эффекте Гуддена - Поля полное количество света, излучаемого в течение затухания, может увеличиться.
Во время освещения вещества электроны возбуждаются за счет поглощения фотонов; когда оптическое возбуждение прекращается, в возбужденных состояниях будет находиться ограниченное число электронов. Поэтому действие внешнего поля, которое увеличивает полное количество излучаемого света, должно сказываться в одном из двух направлений (или в обоих сразу) либо увеличивать относительную вероятность излучательной рекомбинации (по сравнению с безызлучательной), либо приводить к дополнительному возбуждению электронов. Последняя возможность представляется более правдоподобной. Однако Матосси [34] пересмотрел эти вопросы и в противоположность последнему предположению связал эффект гашения с ростом вероятности безызлучательных переходов. Влияние поля можно изучать не только по нормальной фосфоресценции, но также и по инфракрасному излучению, обусловленному предварительным освещением фосфора ультрафиолетовым светом. В принципе подобные эксперименты позволяют получить сведения о роли процессов захвата, которые обусловливают задержку момента излучательной рекомбинации относительно момента возбуждения носителя заряда. Однако результаты оказываются слишком сложными и пока не получили надежного теоретического истолкования [35].
1.4.2. Новые эксперименты по эффектам, вызванным электрическим полем
Описанные выше эффекты электрофотолюминесценции были предметом многочисленных исследований, и хотя объяснение их во многом остается еще сомнительным, основные экспериментальные результаты представляют для нас интерес. На рис. 5(a) пунктирная линия соответствует случаю, когда после первоначального всплеска наблюдается остаточное увеличение яркости. Дестрио с сотрудниками [36] установили, что это происходит в некоторых ZnS-CdS- и ZnS-фосфорах, возбуждаемых рентгеновскими лучами и находящихся в переменном поле. Для экспериментальных целей эти порошкообразные фосфоры приготовлялись в виде суспензии в прозрачном диэлектрике. В случае постоянного поля эффект был только временным вследствие высокой проводимости фосфора. В некоторых случаях коэффициент усиления яркости достигал трех. При этом обычная форма дэшеновского гашения наблюдалась в том случае, когда электрические поля прикладывались к образцам во время облучения последних не рентгеновскими лучами, а ультрафиолетовым светом. Таким образом, эффекты, обусловленные наличием поля, оказываются чувствительными к способу оптического возбуждения.
На рис. 5(в) в показаны типичные результаты для зависимости эффектов усиления и гашения (после первоначального всплеска) от напряженности поля. О существовании максимума, за которым следует спад, сообщил также Штейнбергер с сотрудниками [32]. Когда внешнее поле прикладывалось в отсутствие возбуждающего облучения, никакой люминесценции не наблюдалось. Поэтому эффект усиления внешне (но не принципиально) отличается от явления фотоэлектролюминесценции. Гобрехт и Гумлих описали интересный фосфор, содержащий марганец, в котором под действием электрического поля происходило усиление желтой и одновременное ослабление голубой полос фотолюминесценции [37].
Сложная природа явлений этой группы иллюстрируется еще тем фактом, что влияние электрического возбуждения может сказываться в течение долгого времени (например, нескольких часов) и что оно может обнаруживаться по действию вторичного оптического возбуждения. Насколько известно, систематические эксперименты по изучению электрофотолюминесценции монокристаллических образцов сульфида цинка еще не проводились, хотя относительно сульфида кадмия получены некоторые данные [38]. Подобные эксперименты совершенно необходимы, чтобы составить полное представление об этих явлениях. Их можно было бы строго объяснить, если бы более полно были изучены явления электрической люминесценции, которые происходят без оптического возбуждения. Дальнейшие ссылки на работы по электрофотолюмнесценции можно найти в обширной библиографии, составленной Айви [39].
-
Свечение при одновременном действии поля и света
При освещении люминофоров и одновременном воздействии на них электрического поля, яркость свечения обычно не равна сумме яркостей, получающихся при раздельном действии света или поля.
Иногда свечение называют фотоэлектролюминесценцией, если наблюдается влияние освещения на ЭЛ, и электрофотолюминесценцией, если слабое электрическое поле только изменяет яркость фотолюминесценции (ФЛ). В общем случае, однако, оба явления присутствуют одновременно, при одних и тех же напряжениях, поэтому в дальнейшем эти явления нами обозначаются одним термином «фотоэлектролюминесценция» (ФЭЛ). Явления, смежные с ЭЛ, интересны не только сами по себе, но и с точки зрения расширения сведений об условиях действия поля в кристаллах, так как они проявляются как при больших напряжениях, при которых уже наблюдается ЭЛ, так и при малых напряжениях, недостаточных для возбуждения ЭЛ.
Помимо света из области собственного или примесного поглощения, вторым возбуждающим агентом могут служить также α-, γ-, рентгеновские или катодные лучи.
Если Вфэл -яркость свечения при одновременном действии поля и света, а Вфл и Вэл - яркость при возбуждении люминофора только светом и только полем, то добавочное свечение при двойном возбуждении удобно характеризовать следующей величиной:
ΔB = Вфэл - (Вфл + Bэл).
В общем случае ΔВ может быть как положительным, так и отрицательным, т. е. может наблюдаться ослабление свечения или его усиление (рис. 6). При малых полях, при которых еще нет заметной ЭЛ наблюдается только тушение фотолюлминесценции, а при более высоких - преобладает усиление свечения, хотя тушение присутствует и при этих напряжениях. Таким образом, при достаточно больших полях общее изменение яркости ΔВ может состоять из двух частей, одна из которых связана с изменением ФЛ в электрическом поле, а другая - с изменением ЭЛ при освещении:
ΔВ=ΔВфл+ΔВэл
При малых напряжениях V, второе слагаемое отсутствует, и благодаря тушению, ΔВ отрицательно. При более высоких V преобладает ΔВэл, которое в зависимости от типа образца и условий опытов может быть как положительным, так и отрицательным. В результате суммарное ΔВ также может иметь различные знаки. Все это приводит в общем случае к большомy разнообразию и запутанности наблюдающихся явлений.















