148435 (594499), страница 2
Текст из файла (страница 2)
Рис. 3. Схема размеров основного ковша
Ориентировочно массу ковша тк (т) принимают пропорциональной его вместимости q (м3):
где - удельная масса (приходящаяся на единицу вместимости), принимаемая равной 0,9 т/м3.
Линейные размеры (м) основного ковша типа 02 (рис. 3) назначают в соответствии с действующим стандартом по формулам вида:
Значения коэффициентов пропорциональности k и свободных членов а приведены в табл. 2.
Таблица 2
Определяемые размеры у (рис.2) | k | а, м |
Ширина ковша по внутреннему обмеру, | 1,51 | -0,26 |
Радиус, описываемый при повороте ковша кромкой передней стенки R | 1,1 | 0,26 |
То же режущей кромкой зуба | 1,25 | 0,25 |
Длина прямолинейной части передней стенки | 0,8 | 0 |
Радиусы закруглений корпуса: | 0,45 | 0,08 |
| 0,22 | 0,08 |
Ширина ковша по внутреннему обмеру,
Радиус, описываемый при повороте ковша кромкой передней стенки, R
Радиус, описываемый при повороте ковша кромкой зуба,
Длина прямолинейной части передней стенки,
Радиусы закруглений корпуса, и
2.3 Определение основных параметров рабочего оборудования
Из всех основных видов сменного рабочего оборудования одноковшовых экскаваторов с гидравлическим приводом (обратной и прямой лопаты, грейфера, погрузочного ковша и т. д.) чаще всего применяют рабочее оборудование обратной лопаты. Этот вид рабочего оборудования характеризуется большим числом совмещаемых операций в цикле и более тяжелым нагруженном привода.
Для гидравлического экскаватора рабочее оборудование обратной лопаты следует считать расчетным видом оборудования, определяющим места крепления всех видов оборудования на поворотной платформе и мощность привода исполнительных механизмов.
Размеры элементов рабочего оборудования по длине должны соответствовать заданным предельным рабочим параметрам экскаватора - максимальной глубине копания НК и максимальной высоте выгрузки НВ при опущенной рукояти. Между НК и НВ существует зависимость:
где b = 0.85 м - ширина ковша, м;
kР = 1.26- коэффициент разрыхления грунта, задаётся в зависимости от категории грунта согласно таблицы. Hк =5.91 м, максимальная глубина копания, м. Определим длину стрелы lС, м:
где αС — угол поворота стрелы, αС = 94°.
Определим размер рукояти lР, м:
где Ki = 0.7645, коэффициент пропорциональности рукояти относительно массы экскаватора.
По найденным размерам и
, троят осевой профиль рабочей зоны
Рис. 4. Осевой профиль рабочей зоны
В процессе экскавации грунта надземная часть рабочей зоны может быть использована полностью, а подземная часть - только в пределах безопасной зоны, согласно СНиП ограниченной откосом безопасности не ближе 1 м (на уровне стоянки) от наиболее удаленной от оси вращения поворотной платформы точки опорного контура . Крутизна откоса безопасности зависит от вида разрабатываемого грунта и глубины копания. Абсциссу точки L - начала откоса безопасности на уровне стоянки экскаватора определим как
где а - расстояние от крайней точки опорного контура экскаватора до начала откоса, согласно СНиП принимаемое равным 1 м;
Bк=0.85 м – ширина ковша; lг – расчетная глубина копания
Рис. 5. Схема к определению параметров гидроцилиндра рукояти.
2.4 Выбор типоразмеров гидроцилиндров и их привязка
2.4.1 Выбор типоразмеров гидроцилиндра привода рукояти
Определим работу, затрачиваемую на преодоление сопротивлений грунта копанию рукоятью:
где К1 – удельное сопротивление грунта копанию, К1=220 кПа;
Кэ – коэффициент энергоемкости, Кэ=0.94;
q – вместимость ковша, q=0.4 м3;
lк=R1=1.2 м;
Hp=3.94 м – оптимальная глубина копания;
τ – угол наклона откоса безопасности к уровню стоянки экскаватора, τ=75˚30’
Для определения работы AG (кДж), затрачиваемой на преодоление сил тяжести рабочего оборудования и грунта в ковше, предварительно найдем силы тяжести ковша, рукояти с гидроцилиндром привода ковша, коромыслом и тягой, стрелы с гидроцилиндром привода рукояти и грунта в ковше.
Масса ковша mк (т) определена ранее, массы рукояти тр (т) и стрелы mс (т) определим приближенно по подобию с уже имеющимися экскаваторами как
где - масса 1 п. м. металлоконструкции рукояти или стрелы, выбираемая из пределов
= 0,08 ... 0,38 т/м при mэ= 6 ... 40. Принимаем
= 0,24 т/м.
Массу грунта в ковше в начале (тгн, т) и в конце (mгв, т) прямолинейного участка ВС определим как:
где - плотность грунта,
=1.9 т/м3;
V- объем грунта в ковше
Тогда
Определим силы тяжести рабочего оборудования.
Сила тяжести рукояти:
Сила тяжести стрелы:
Сила тяжести ковша:
Сила тяжести грунта в ковше в начале и в конце участка ВС:
С использованием полученных данных вычислим работу, затрачиваемую на преодоление сопротивления сил тяжести элементов рабочего оборудования и грунта в ковше на указанных перемещениях:
Полная работа, затрачиваемая на преодоление сопротивлений грунта копанию и подъему рабочего оборудования с грунтом, определится суммой:
Такую же работу, с учетом потерь на трение в кинематических парах, учитываемых коэффициентом полезного действия (КПД) механизма поворота рукояти, выполнит гидроцилиндр ее привода:
,
Приближенно указанный КПД можно определить как:
где - КПД одного шарнира (для смазанных шарниров
);
n - число шарниров (п = 3); - механический КПД гидроцилиндра, учитывающий потери на трение в парах поршень - зеркало цилиндра и шток - накидная гайка (
).
Тогда работа гидроцилиндра механизма поворота рукояти будет равна:
Представим работу через параметры гидроцилиндра: перепад давлений рабочей жидкости в его полостях, принимаемый как среднее рабочее давление
(кПа); площадь F (м2) и ход поршня
(м). С учетом примерно 10% потерь при перемещении жидкости от насоса к гидроцилиндру среднее рабочее давление определится как:
, МПа
где - среднее рабочее давление, развиваемое насосом, МПа. Для аксиально-поршневых насосов серии 223
= 32 МПа.
В пределах рассматриваемого перемещения рабочего оборудования ход поршня Ln используется лишь частично - Ln'. Предполагая перемещение поршня примерно пропорциональным синусу половины углового перемещения рукояти относительно стрелы, найдем:
, м
где ради сокращения записи в дальнейших расчетах обозначено:
где и
- углы между кинематическими звеньями
и
соответственно в их нижнем и верхнем положениях (определяются непосредственным измерением по схеме рис. 5),
=145˚ и
=82.5˚
- полное угловое перемещение рукояти,
=105˚
Представим работу гидроцилиндра в виде:
, кДж
Произведение есть рабочий объем гидроцилиндра
(м3) - его обобщенная характеристика. Тогда рабочий объем гидроцилиндра будет равен
, л
По этому параметру (отклонение в меньшую сторону не более 10%) предварительно выберем типоразмер гидроцилиндра (таб. 3).
Таблица 3
Диаметр поршня D, мм | 140 |
Диаметр штока d, мм | 90 |
Наружный диаметр гильзы D1, мм | 168 |
Наружный радиус концевой проушины r, мм | 100 |
Размер A=L0-Lш, мм | 580 |
Площадь поршня F, см2 | 153.9 |
Рабочий объем W, л | 13.85 |
Ход поршня L, мм | 900 |
2.4.2 Выбор типоразмеров гидроцилиндра механизма поворота ковша
Механизм поворота ковша состоит из стойки (рукояти) 1 (рис. 6), ползунковой пары гильза гидроцилиндра - поршень со штоком 2, коромысла 3, тяги 4 и ведомого звена (ковша) 5.
Рис. 6. Конструктивная схема механизма поворота ковша
Не располагая исчерпывающими результатами исследований оптимальных отношений кинематических звеньев механизма, для расчета назначим их по подобию с существующими экскаваторными механизмами (в долях от длины ведомого звена - расстояния между проушинами ковша,
=0.35 м):
Длина стойки
Длина большего плеча коромысла
Длина тяги
Вычислим работу сил сопротивления грунта копанию без учета влияния изменчивости толщины грунтовой стружки:
Работа, затрачиваемая на преодоление сопротивлений грунта копанию поворотом ковша, равна:
где ξ – поправочный коэффициент, учитывающий изменчивость толщины стружки, ξ=1.25 для глин и суглинков.
Работа, затрачиваемая на преодоление сопротивлений сил тяжести ковша и грунта в нем, не превышают 2,5. ..3,5% от вычисленной выше работы , в связи с чем учтем ее поправочным коэффициентом в полной работе сил сопротивления копанию грунта поворотом ковша:
Вычислим рабочий объем гидроцилиндра