146323 (594215), страница 2
Текст из файла (страница 2)
Пр** - протечки пара через уплотнения ЦВД.
Расчет теплоты для внешних потребителей.
Такой расчет проводят по группам потребителей с последующим суммированием расходов теплоты. В рассчитываемой схеме для внешнего потребления предусмотрена только теплофикационная установка ТУ для отпуска теплоты в тепловую сеть. Основное количество теплоты требует бойлерная установка с теплообменниками Б1, Б2, БЗ, Б4. Температурный график сетевой воды принят 70-165 °С (70°С -температура воды, возвращаемой в ТУ; 165 °С - температура воды, направляемой в теплосеть). Значение подогрева воды в каждом сетевом подогревателе определено параметрами соответствующего отбора турбины и минимальным температурным напором (подогревом) в подогревателе (табл. 0.4.-3). Количество теплоты, отдаваемое в теплосеть, определяется по формуле:
кДж/кг – энтальпия сетевой воды на выходе из последнего (Б4) сетевого подогревателя (определяется при
МПа,
оС);
кДж/кг – энтальпия сетевой воды на входе в первый (Б1) сетевого подогревателя (определяется при
МПа,
оС).
При заданной мощности и параметрах сетевой воды можно определить расход сетевой воды по формуле:
В данной схеме 2 шт. основных подогревателей сетевой воды и 2 шт. пиковых подогревателей сетевой воды типа ПН-950-42-8А [З]. Гидравлическое сопротивление при номинальном расходе воды для таких подогревателей составляет 0.0147 МПа. Сетевой насос создает давление на входе в теплофикационную установку в размере 2.0 МПа.
В дальнейшем расчете в обозначениях параметров, используемых в расчетных уравнениях, будут нижние индексы - условное обозначение элементов схемы, а верхние индексы - обозначение среды.
Для любого (i-го) сетевого подогревателя уравнение теплового баланса имеет следующий вид:
- энтальпия сетевой воды на выходе из (i-го) сетевого подогревателя;
- энтальпия дренажа (i-го) сетевого подогревателя;
- расход дренажа греющего пара;
- к.п.д., учитывающий тепловые потери.
Как видно из расчетной схемы (рис.1), теплофикационная установка (ТУ) питается паром из отборов 2, 3, 4, 5. Необходимые данные для расчета энтальпии берем из столбцов 6, 8, 9, 13 (табл. 0.4.-3). Получаем систему уравнений:
Расходы греющих паров (строка 13) рассчитываем последовательно по подогревателям, начиная с Б4, учитывая каскадный слив дренажей. Расчет данной системы дает следующий результат:
Суммарный расход теплоты из отборов турбины на теплофикационную установку определяется по формуле:
Расходы пара на уплотнения вала турбины, штоков регулирующего и стопорного клапанов и на эжекторы.
Т.к. в проекте отсутствуют необходимые численные значения, то эти данные возьмем из проекта однотипной турбоустановки, близкой по мощности и параметрам к рассчитываемой.
Основной эжектор (ОЭ) питается паром из деаэратора с расходом 1.9 кг/с. Кроме того, для выработки относительно чистого пара для подачи его на уплотнения и в качестве рабочего тела на эжектор уплотнений (ЭУ) в схеме предусмотрен испаритель (И), питательной водой для которого служит конденсат после деаэратора с энтальпией кДж/кг. Расход первичного пара из отбора 2 турбины на испаритель
определяют из уравнения теплового баланса этого элемента:
кг/с - паропроизводительность И;
- относительная величина продувки;
кДж/кг - энтальпия 2-го отбора идущего на И;
кДж/кг - энтальпия вторичного пара, опред. по давлению в И;
кДж/кг - энтальпия продувочной воды, опред. по давлению в И;
- к.п.д. испарителя, связанный с потерями тепла в ОС.
Из расчета получаем расход первичного пара из отбора 2 турбины на испаритель:
Определить величины подогрева основного конденсата в конденсаторах пара эжекторов можно на основе соответствующих балансных уравнений, если известен теплоперепад, срабатываемый в эжектирующих устройствах. Обычно эти величины не рассчитывают. В нашем случае принимаем кДж/кг.
Параметры рабочего тела в системе регенерации.
Напоры насосов тракта питательной воды и конденсата рассчитывают по методике главы 1 [2], причем к.п.д. насосов принимают по проекту турбоустановки или оценивают. Повышение энтальпии воды в насосах определяется по следующей формуле:
- удельный объем перекачиваемой воды;
Для питательного насоса (ПН) при :
Расчет необходимого напора питательного насоса:
МПа – давление рабочего тела перед турбиной;
МПа – гидравлическое сопротивление трубопроводов;
МПа – сопротивление питательного трубопровода;
МПа – сопротивление регулирующего клапана питания;
Расчет повышения энтальпии воды в ПН:
м3/кг - удельный объем перекачиваемой воды ПН.
Для конденсационного насоса 1-го подъема (КН1) при :
Расчет необходимого напора конденсатного насоса 1-го подъема:
МПа – сопротивление охладителей эжекторов;
МПа – сопротивление конденсатоочистки;
МПа – сопротивление трубопроводов;
МПа – сопротивление регулирующего клапана уровня.
Расчет повышения энтальпии воды в КН1:
м3/кг - удельный объем перекачиваемой воды КН1.
Для конденсационного насоса 2-го подъема (КН2) при :
Расчет необходимого напора конденсатного насоса 2-го подъема:
Сопротивления регенеративных подогревателей и вынесенных охладителей дренажа принимаем с учетом оборудования, используемого в паротурбинной установки типа (К-500-65/3000) [1]:
МПа – сопротивление трубопроводов;
МПа – сопротивление подогревателя ПНД1;
МПа – сопротивление подогревателя ПНД2;
МПа – сопротивление подогревателя ПНД3;
МПа – сопротивление подогревателя ПНД4;
МПа – сопротивление подогревателя ПНД5;
МПа – сопротивление охладителя дренажа ОД1;
МПа – сопротивление охладителя дренажа ОД2;
МПа – сопротивление охладителя дренажа ОД3;
МПа – сопротивление охладителя дренажа ОД4;
МПа – сопротивление охладителя дренажа ОД5.
Расчет повышения энтальпии воды в КН1:
м3/кг - удельный объем перекачиваемой воды КН2.
Энтальпия конденсата на входе в первый регенеративный подогреватель (П1):
Определение расходов рабочего тела по элементам схемы.
Определение расходов рабочего тела производим на основе уравнений тепловых и материальных балансов. Определим порядок решения этих уравнений. В данном примере определить расходы греющего пара на П3, Д6 сразу не удается, т.к. эти потоки связаны с величинами дренажей из СПП. Поэтому поступим следующим образом: обозначим расход пара после ЦВД турбины через Х и будем решать балансные уравнения для элементов схемы в следующем порядке:
а) Сепаратор (С):
б) Первая ступень пароперегревателя (ПП1):
в) Вторая ступень пароперегревателя (ПП2):
г) Деаэратор (Д):
(19-13) кг/с – расход, связанный с подсосом уплотняющей воды в ПН;
кг/с – расход питательной воды;
кг/с – расход пара на турбину;
8 кг/с – расход, учитывающий протечки реакторной воды у ГЦН.
Уравнение материального баланса:
кг/с – расход пара, отводимого на основной эжектор (ОЭ) и (ЭУ).
Уравнение материального баланса:
кДж/кг – энтальпия пара, отводимого на основной эжектор (ОЭ).
д) Подогреватель низкого давления 5 (ПНД5):
е) Подогреватель низкого давления 4 (ПНД4):
ж) Подогреватель низкого давления 3 (ПНД3):
з) Подогреватель низкого давления 2 (ПНД2):
и) Подогреватель низкого давления 1 (ПНД1):
к) Расход пара после ЦВД турбины (X):
кг/с – протечки острого пара через уплотнения штоков турбины;
кг/с – протечки пара через уплотнения ЦВД.
Система состоит из 12-и уравнений теплового и материального баланса с 12-ю неизвестными ( ). Все значения используемых энтальпий берутся из табл. 0.4.-3. Результаты, полученные в ходе решения системы уравнений, сведены в табл. 0.8.-1.
Таблица 0.8.-1: Сводная таблица результатов.
Характеристика | Численное значение | Размерность |
615.36 | кг/с | |
96.59 | кг/с | |
36.58 | кг/с | |
42.57 | кг/с | |
717.47 | кг/с | |
6.19 | кг/с | |
36.53 | кг/с | |
44.63 | кг/с | |
16.14 | кг/с | |
19.27 | кг/с | |
25.89 | кг/с | |
698.93 | кДж/кг |
Баланс всех полученных расходов проверяем на основе уравнения материального баланса конденсатора. Расход рабочего тела после конденсатора запишем в следующем виде:
кг/с – конденсат после ХВО, сбрасываемый в конденсатор;