126238 (593209), страница 6
Текст из файла (страница 6)
рис. 22
где: Р - максимальная нагрузка, действующая на конце рычага , принимается из осциллограммы нагрузок на рычаге.
R - сила реакции в паре ролик-кулак,
N - расчетная сила нормального давления в паре кулак-ролик,
- угол давления.
Используя известные формулы моментов сил получим:
N = Р * l / (l1 * cos )
Угол давления для пространственного кулачкового механизма находится
Подставляя найденные исходные данные: N, n, пр в формулу для кр получим расчетное значение рабочего контактного напряжения.
Допускаемое контактное напряжение []к для термообработанных сталей находится:
[]к = (230.... 300) HRCэ
Сравнивая кр и []к можно оценить долговечность рабочей пары пазовый кулачок-ролик.
1.9.2 РАСЧЕТ НА ПРОЧНОСТЬ РЫЧАГА
РЫЧАГ работает на усталость в условиях знакопеременного изгиба, поэтому расчет коэффициента запаса прочности целесообразно проводить по максимальным значениям изгибающих сил Р+, Р-, которые берутся из осциллограмм с соответствующим знаком. Для нашего случая изгибающее усилие, возникающее при движении рычага к правой кромке ( выталкивание прокладчика ) принимаем со знаком "+", т.е. Р+, а при движении в исходное положение со знаком "-" , т.е. Р-.
Коэффициент запаса прочности n для знакопеременного цикла нагружения находится:
где: -1 - предел выносливости при симметричном цикле нагружений,
В - предел прочности,
ср - среднее напряжение цикла от рабочих нагрузок,
К - коэффициент концентрации напряжений,
n - коэффициент учитывающий состояние поверхности,
m - масштабный фактор.
ср = (max i + min i) / 2
a i = (max i - min i) / 2, где:
max i , min i - максимальное (со знаком "+") и минимальное (со знаком "-") напряжения нагружения, возникающие в i сечении рычага.
max i = Pi+ * li / Wi min i = Pi- * li / Wi
где:li - расстояние от точки приложения силы Р+ или Р- до i сечения рычага. Так как датчики, регистрирующие изгиб рычага наклеиваются на расстоянии 100 мм от точки приложения силы Р+ или Р- то 0 < l < 80 (т.к. база датчика 20 мм), Wi - момент сопротивления i сечения.
Для рычага эллиптического сечения:
Wx = a2 b / 4
где:а - большая полуось эллипса, см (а =1,8 см),
b - малая полуось эллипса, см (b = 0,6 см ).
1.9.3 РАСЧЕТ НА ПРОЧНОСТЬ ШПИНДЕЛЯ
Шпиндель, также как и рычаг, подвергается воздействию знакопеременных нагрузок, поэтому расчетная формула имеет аналогичный вид:
где:ср - среднее напряжение цикла от рабочих нагрузок,
ср = (max + min) / 2
a = (max - min) / 2
При вычислении максимального max и минимального min напряжений шпиндель рассматривается как консольная балка с защемленным концом, на которую посередине наклеенных датчиков (на расстоянии l от заделки) действуют знакопеременные усилия, регистрируемые при экспериментальных исследованиях.
M+ = P+ * l max = P+ * l / W
M- = P- * l min = P- * l / W
где: W - момент сопротивления шпинделя, который для круга равен
W = 0,1 d , cм.
укладчик кинематический прокладчик движение
1.10 РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ МОДЕРНИЗИРОВАННОЙ ПРИЕМНОЙ КОРОБКИ
Экспериментальные исследования приемной коробки с серийными и вновь разработанными в настоящем дипломном проекте деталями проводился в ткацкой лаборатории ВНИИЛТЕКМАШ на макете станка СТБ-250 при частоте вращения главного вала 250 мин-1.
Для получения сравнительной оценки эффективности предложенных конструктивных усовершенствований механизмов и деталей регистрировались нагрузки в рычаге, приводящем в движение возвратчик прокладчика.
В результате обработки осциллограмм получено:
- наибольшие нагрузки возникают в момент контакта возвратчика прокладчика с прокладчиком; с учетом разброса пролета прокладчиков среднее значение угла поворота главного вала, соответствующее этому моменту, составляет 320 град.,
- величина нагрузки для механизмов с серийными деталями составила – 23,5 кгс, а с новыми деталями (тормозные пластины переднего и заднего тормозов из термообработанного полиуретана, возвратчик с вибродемпфирующими вкладышами) – 19,5 кгс, (Рис. 23, 24, 25)
- характер нагрузок с новыми деталями не носит явно выраженного удара за счет демпфирования,
- нагрузки при отходе возвратчика прокладчиков в исходное положение оказались одинаковыми для обоих механизмов и составили 10 кгс при угле поворота главного вала – 50 град.
На основе полученных экспериментальных данных выполним прочностные расчеты пары кулак - ролик, рычаг, шпиндель.
1.11 РАСЧЕТ КОНТАКТНЫХ НАПРЯЖЕНИЯ В ПАРЕ КУЛАК - РОЛИК
Из осциллограмм поучено максимальное усилие на рычаге с серийными деталями - 23,5 кгс, а с новыми деталями - 19,5 кгс при угле поворота главного вала 320 град. При движении рычага в исходное положение величина нагрузки составила - 10 кгс, а угол поворота главного вала - 50 град.
Проверку на контактную прочность проведем по максимальным усилиям.
1. Найдем угол поворота рычага, соответствующий положению главного вала - 320 град., радиус-вектор i кулака, соответствующий этому углу берем из таблиц на кулак = 28,36. Подставив в формулу, получим = 5,2 град.
2. Вычислим аналоги , используя формулы численного дифференцирования табличных данных, получим
3. Вычислим радиус кривизны центрового профиля паза
см
4. Вычислим пр и найдем и n по таблицам ( 9 ).
отсюда пр = 1,14 см, = 1, n = 0,8
5. Найдем угол давления
град
6. Найдем силу нормального давления N
N = 23,5 * 133 / (58 * cos 15,2) = 55,1 кгс
7. Вычислим контактные рабочие напряжения
отсюда: - для механизма с серийными деталями кр =13953 кг/см2
- для механизма с новыми деталями кр =13050 кг/см2
Для кулака и ролика, закаленных до твердости HRCэ = 55 имеем
[σ]к = 250 • 55 = 13750 кг/см2
Сравнение рабочих и допустимых контактных напряжений показывает, что с серийными деталями рабочее напряжение несколько выше допустимого, а с новыми - напряжение ниже.
1.12 РАСЧЕТ НА УСТАЛОСТНУЮ ПРОЧНОСТЬ РЫЧАГА
Рычаг работает в условиях знакопеременного изгиба, поэтому вычисление коэффициента запаса прочности проводим по максимальным изгибающим моментам с учетом их направления по сечению, расположенному на расстоянии 10 см от верхнего конца рычага.
Тогда: М+мах = 235 кгсм, М-мах = 195 кгсм
Рычаг изготавливается из стали 40ХЛ, для которой:
В = 6500 кг / см2, -1 = ЗЗ00 кг/см2
С учетом условий изготовления и обработки можно принять:
К = 1,5, n = 1,35, м = 0,77
Рычаг имеет эллиптическое сечение а = 1,8 см, b = 0,6 см
Отсюда W = 1,53 см3, +мах = 154 кг/см2, -мах = 127 кг/см2
ср = 13,5 кг/см2, а = 135,5 кг/см2
Подставив найденные показатели, вычислим n, n = 20, что значительно превышает n допустимое.
РАСЧЕТ НА УСТАЛОСТНУЮ ПРОЧНОСТЬ ШПИНДЕЛЯ.
Шпиндель также как и рычаг подвергается воздействию знакопеременных нагрузок, изгибающих шпиндель, прикладываемых на расстоянии l = 2 см от основания:
P+max = 78 кгс, Р-max =46 кгс или M+max = 126 кгсм, М-max = 92 кгсм.
Шпиндель изготавливается из стали 40Х, закаливается до твердости HRCэ = 50 и шлифуется. Характеристики материала и значения коэффициентов, входящих в формулу для n , следующие:
В = 10000 кг/см2 , -1 = 4000 кг/см2 ,К = 2, n = 1,05, м = 0,83,
W = 0,2d3 = 0,675 см3, +мах = 231 кг/см2, -мах = 136 кг/см2,
ср = 47 кг/см2, а = 184 кг/см2
Подставив в формулу для найденные показатели, получим n = 22, что значительно превышает n допустимое.
1.13 ВЫВОДЫ
1. Выполнен анализ литературных и патентных источников, который показал, что модернизация механизмов приемной коробки является в настоящее время актуальной проблемой.
2. Рассмотрены работа механизмов ткацкого станка СТБ при выработке ткани и образовании кромок и установлены факторы, в работе механизмов приемной коробки, негативно влияющие на эти процессы.
3. Сформулированы требования, обеспечивающие надежную работу механизмов приемной коробки, и дано обоснование работ по ее модернизации.
4. Разработаны алгоритмы и выполнено аналитическим методом кинематическое исследование механизма укладки прокладчиков на транспортер с использованием ЭВМ.
5. Проанализирована расчетная конструкторская документация на узкие и широкие станки СТБ двух заводов-изготовителей: Чебоксарского и Новосибирского.
6. Анализ графиков аналогов скоростей и ускорений конечного звена механизма - толкателя - указывает на необходимость точной настройки механизма, что достаточно сложно выполнить, учитывая допуски на изготовление звеньев, имеющиеся зазоры (до 0,5 мм) в кулачковой паре и отсутствие инструментальных методов регулировки.
7. Выполнен синтез механизма укладчика, при котором на 100 град. расширена его циклограмма, снижены в 3 - 4 раза величины скоростей и ускорений толкателя, увеличена до 10 град. зона взаимодействия толкателя с прокладчиком, что существенно расширило пределы регулировки механизма.
8. Разработана конструкторская документация на механизмы торможения и возвратчика прокладчиков. За счет применения современных полимерных материалов снижены контактные и ударные нагрузки.
9. Разработаны методики экспериментального исследования механизмов приемной коробки и расчетной оценки контактной и усталостной прочности деталей.
10. Выполнены оценочные прочностные расчеты кулачковой пары, шпинделя и рычага и показано, что при использовании разработок настоящего дипломного проекта контактные напряжения в паре кулак-ролик будут находится в пределах допустимых.
2. ОХРАНА ТРУДА И БЕЗОПАСНОСТЬ ПРОИЗВОДСТВЕННОЙ ДЕЯТЕЛЬНОСТИ
Под охраной труда понимают систему законодательных актов, социально-экономических, организационных, технических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья, работоспособности человека в процессе труда.
Техника безопасности — это система организационных мероприятий и технических средств, предотвращающих воздействие на работающих опасных производственных факторов, а производственная санитария – это система организационных мероприятий и технических средств, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов.
2.1 АНАЛИЗ ТРУДА ПРИ ЭКСПЛУАТАЦИИ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ НА ПРОИЗВОДСТВЕ
Анализ эксплуатации технологического оборудования показывает, что отдельные виды машин, станков и механизмов ткацкого производства не в полной мере отвечают требованиям безопасности человека, В целом ряде случаев неправильное расположение рабочей плоскости вынуждает работниц длительное время находиться в неестественной рабочей позе. Наличие протяженного маршрута обслуживания вынуждает ткачих совершать за смену путь 10 -15 км, что вызывает развитие признаков плоскостопия. Необходимость работать в положении стоя с частыми наклонами туловищ, способствует возникновению узелкового расширения вен.
Анализ условий труда на текстильном предприятии показывает, что к числу опасных и вредных относятся следующие производственные факторы: незащищенные подвижные элементы производственного оборудования; движущиеся вспомогательные механизмы; повышенная запыленность воздуха рабочей зоны пылью; повышенная загазованность воздуха в рабочей зоне; повышенная температура поверхности нагреваемого оборудования и материалов; повышенная влажность воздуха в рабочей зоне; высокий уровень шума и вибраций; опасный уровень напряжения в электрических цепях, недостаточная освещенность; брызги кислот, щелочей и концентрированных растворов; действие статического электричества.
Обслуживание оборудования, в котором есть незащищенные подвижные элементы, сопряжено с возможностью попадания человека в опасную зону. Согласно ГОСТ 12.0.002-80 опасной зоной называется пространство, в котором возможно воздействие на работающего опасного или вредного производственного фактора. При эксплуатации оборудования необходимо принимать во внимание наличие опасных зон, их размеры, специфику и правильно выбирать способы нейтрализации данных опасностей.
Основные опасные зоны механизмов: валы, цепная передача, ременная передача, зубчатая рейка, зубчатые колеса и т. д. Все эти механизмы опасны для персонала, работающего на них, потому что могут быть причиной увечья.