125451 (593110), страница 3
Текст из файла (страница 3)
2) парового котла-утилизатора со вспомогательным оборудованием для очистки циркуляционных газов от угольной пыли (пылеосадительный бункер для очистки от крупных частиц, циклонов для очистки от мелких частиц), соединительных газоходов и вспомогательных тягодутьевых устройств (основного и вспомогательного дымососов).
Всего УСТК ОАО «Уральская Сталь» оснащено четырьмя агрегатами сухого тушения кокса.
Принцип работы установки сухого тушения кокса заключается в следующем:
1) через щель в нижней конической части сушильной камеры, заполненной горячим коксом, с помощью мельничного вентилятора ВМ-160/850 нагнетается инертный газ, смешанный с продуктами горения кокса (далее циркуляционный газ);
2) циркуляционный газ имеет следующие усредненные значения составных компонентов (данные из технологической инструкции):
| азот N2 | – от 65 до 75 % |
| окись углерода СО | – от 8 до 12% |
| водород Н2 | – от 3 до 5 % |
| двуокись углерода СО2 | – от 7 до 14 % |
| кислород О2 | – до 2% |
| метан СН4 | – от 0,5 до 4 % |
3) газы, двигаясь на встречу загруженному сверху коксу, нагревается, одновременно его охлаждая;
4) нагретые газы выходят через верхние окна тушильной камеры и поступают в пылеосадительный бункер. За счет резкого изменения, объёма в бункере происходит выпадение крупных частиц кокса;
5) из пылеосадительного бункера циркуляционный газ поступает в котёл- утилизатор, где последовательно омывает поверхности нагрева котла (на котлах №1, 2, 3 - экранные испарительные трубки), пароперегреватель, испарительные секции, водяной экономайзер, проходя через которые охлаждается, передавая тепло воде, проходящей внутри труб поверхностей нагрева;
6) после котла-утилизатора циркуляционный газ проходит через газораспределительный короб, распределяется на два потока и по восходящим газоходам поступает на циклоны;
7) проходя через циклоны газ, очищенный от более мелких частиц угольной пыли, поступает в общий газоход и подводится на всас мельничного вентилятора;
8) за счет центробежной силы, создаваемой вентилятором, циркуляционный газ приобретает дополнительную энергию напора и вновь под давлением подаётся в нижнюю часть тушильной камеры;
9) для поддержания заданного количества инертного газа, недопущения подсосов кислорода из воздуха и восполнения утечек инертного газа через неплотности, свечи и др., на всас дутьевого вентилятора производится подача азота - из магистрального азотопровода;
10) осажденные в бункере и циклонах частицы коксовой пыли через систему мигалок сбрасываются в трубопровод гидрозолоудаления.
Здание котельной делится помещением щитов управления КИПиА и подстанцией на две части, в каждой из которой размещаются два котлоагрегата.
В служебном отделении УСТК располагается всё вспомогательное оборудование котельной: на первом этаже - питательные насосы, установка фосфатирования, щит управления питательной установкой; на втором этаже - расположены трубопроводы подвода химочищенной воды, теплообменник; на третьем этаже расположены деаэраторы, трубопроводы пара и воды, сепараторы непрерывной продувки.
1.2.4 Устройство и принцип работы циркуляционного насоса
Циркуляционный насос предназначен для принудительной циркуляции воды в водяном контуре котла-утилизатора.
Насос состоит из приводной и проточной частей. Приводная часть состоит из опорного кронштейна, в котором на подшипниках установлен вал насоса. Подшипники закрыты крышками. Проточная часть состоит из спирального корпуса, который крепится к фланцу опорного кронштейна, рабочего колеса, насаженного на конец вала, и всасывающего патрубка, присоединенного к спиральному корпусу.
Спиральный корпус служит для преобразования кинетической энергии жидкости после рабочего колеса в энергию давления. Насосы поставляются с напорным патрубком, направленным вертикально вверх.
Рабочее колесо служит для передачи механической энергии двигателя потоку жидкости. Оно выполнено из двух дисков соединенных лопатками; передний диск, с входным отверстием. Рабочее колесо имеет уплотняющий поясок, который в паре с уплотнительным кольцом, запрессованным во всасывающем патрубке, образует уплотнение, служащее для уменьшения перетока жидкости из области высокого давления в область низкого давления.
Всасывающий патрубок служит для подвода перекачиваемой жидкости к рабочему колесу. Он крепится к спиральному корпусу и является его причиной. На фланце патрубка имеется резьбовое отверстие для присоединения манометра, заглушаемое при поставке пробкой.
Сальниковое уплотнение насоса служит для уплотнения вала в месте выхода из корпуса и состоит из отдельных колец, установленных с относительным смещением разрезов по 120 градусов.
1.2.5 Технические параметры насоса НКУ-250
Основные технические параметры циркуляционных насосов приведены в таблице 4, данные приводятся на основе технологической инструкции, паспорта агрегата.
Таблица 4 - Техническая характеристика насоса НКУ-250
| Наименование показателя | Единицы измерения | Показатель |
| 1 | 2 | 3 |
| Производительность | м3/ч | 250 |
| Создаваемый напор | м.вод.ст | 32 |
| Частота вращения | об/мин | 1450 |
| Мощность электропривода | кВт | 45 |
| Допустимая температура перекачиваемой воды | °С | 255 |
| Характеристика качества перекачиваемой воды: значение РН содержание механических примесей при размере не более 0,1 мм | - % | 8-9 до 0,1 по массе |
1.2.6 Технологическая схема работы деаэрационно-питательной установки (ДПУ) участка котлов-утилизаторов за УСТК
В ДПУ участка входят:
1) два деаэратора атмосферного типа с трубопроводами обвязки химочищенной воды, пара, сброса дренажных вод, устройств защиты (гидрозатворов) и охладителей выпара, включенных в тепловую схему деаэратора;
2) группа питательных насосов котлов-утилизаторов из четырех штук;
3) водоводяной кожухотрубчатый теплообменник;
4) сепараторы непрерывной продувки в количестве двух штук;
5) узлы ввода и разводки трубопроводов обвязки химочищенной, деаэрированной питательной воды, 7-ми и 16-ти атмосферного паропровода;
6) первичные приборы измерения и контроля, системы автоматического регулирования и управления технологическим процессом, и щитов управления КИПиА;
7) установка ввода дозирования корректирующих реагентов (фосфата) в питательную воду.
Химочищенная вода с химводоочистки №1 теплоэлектроцентрали, по двум трубопроводам поступает на ДПУ участка котлов-утилизаторов за УСТК, откуда через узел ввода через теплообменник, по двум ниткам подается на верхние сита деаэрационной колонки. Проходя деаэрационную колонку, деаэрированная вода накапливается в баке-аккумуляторе. Далее деаэрированная вода по сборным трубопроводам подаётся на кожухотрубчатый теплообменник, где происходит снижение её температуры до 70 ºС и далее по всасывающим трубопроводам подаётся на общий сборный коллектор деаэрированной воды и далее на всас питательных насосов. Группа питательных насосов обеспечивает подачу деаэрированной питательной воды по двум напорным трубопроводам с давлением 56-66 кгс/см2. Для поддержания требуемого давления в напорных трубопроводах, регулирование может осуществляться за счет включения дополнительного насоса, переходя с насоса большей производительности на насос с меньшей производительностью, а также за счет перепуска воды из напорных трубопроводов в безнапорную часть бака-аккумулятора деаэрационной установки по линии рециркуляции.
Для обеспечения процесса термической деаэрации (обескислороживания) в ДПУ подведены трубопроводы 7-ми, 16-ти атмосферного пара и сепарационного пара от сепараторов непрерывной продувки котлов. Основной подвод пара на деаэрацию осуществляется из магистрального паропровода 7-ми атмосферного пара. В качестве резервного, на ДПУ имеется подвод 16-ти атмосферного пара, взятый из паропровода котельной от котлов-утилизаторов за УСТК.
Загрязнённый кислородом пар (выпар) проходя через охладители выпара отдаёт тепло химочищенной воде, конденсируется и сбрасывается в канализацию. Для обеспечения режима пуска и остановки деаэраторов, а также для сброса выпара в случае необходимости отключения охладителя выпара или в случае его неисправности, предусмотрен прямой отвод выпара в атмосферу.
1.2.7 Устройство и принцип действия деаэратора
Деаэратор состоит из бака-аккумулятора, деаэрационной колонки, устройств защиты деаэратора от превышения давления пара и уровня воды.
В деаэрационной колонке применена двухступенчатая система деаэрации: первая ступень - струйная, вторая ступень - барботажная. Потоки воды, подлежащие деаэрации, подаются на верхнюю перфорированную тарелку. С неё вода стекает на расположенную ниже перепускную тарелку, откуда узким пучком струй увеличенного диаметра сливается на начальный участок непровального, барботажного листа. Затем вода проходит по барботажному листу в слое, обеспечиваемом переливным порогом, и через трубу самотеком сливается под уровень воды в бак-аккумулятор, после выдержки в котором отводится из деаэратора по трубе на питательные насосы.
В деаэратор предусмотрено три подвода пара:
1) через один пар поступает в верхнюю часть бака-аккумулятора, вентилирует паровой объём бака и попадает под барботажный лист. При увеличении тепловой нагрузки деаэратора срабатывает гидрозатвор пароперепускного устройства, через который избыточный пар перепускается в струйный отсек барботажного устройства третьей тарелки деаэрационной колонки;
2) часть пара подаётся по перфорированной трубе в деаэрационную колонку на дополнительное барботажное устройство, после которого пар также попадает в барботажный отсек;
3) подвод пара на барботажный подогрев в нижнюю часть бака-аккумулятора предназначен для прогрева деаэратора на предпусковых режимах работы, а также для догрева воды до необходимых параметров в баке-аккумуляторе;
4) парогазовая смесь отводится из деаэратора через патрубок отвода. В струях осуществляется подогрев воды до температуры близкой к температуре насыщения, удаления основной массы газов и конденсации большей части пара, подводимого в деаэратор, частичное выделение газов из воды в виде мелких пузырьков идет на тарелках. На барботажном листе осуществляется догрев воды до температуры насыщения с незначительной конденсацией пара и удаление микроскопических газов. Процесс дегазации завершается в деаэраторном баке, где происходит выделение из воды мелких пузырьков газов за счет отстоя.
1.2.8 Техническая характеристика деаэратора ДА-200
Техническая характеристика деаэраторов установленных на участке УСТК приведена в таблице 5, данные приводятся на основе технологической инструкции, паспорта агрегата.
Таблица 5 - Техническая характеристика деаэратора ДА-200
| Наименование показателей | Единицы измерения | Значение |
| 1 | 2 | 3 |
| Производительность | т/час | 200 |
| Абсолютное давление | МПа (атм) | 0,12 (1,2) |
| Продолжение таблицы 5 | ||
| 1 | 2 | 3 |
| Температура деаэрированной воды | °С | 104,2 |
| Остаточная массовая доля кислорода в деаэрированной воде | мкг/кг | 20 |
| Остаточная массовая доля свободной углекислоты в деаэрированной воде | мкг/кг | отсутствует |
| Номинальный удельный расход выпара | кг/т.д.в. | 1,2-0,3 |
| Максимальный и минимальный подогрев воды, требуемый качеством воды | °С | 64-104 |
| Диапазон изменения производительности, в пределах которого гарантируется устойчивая работа и требуемое качество деаэрированной воды | % | 30-120 |
| Ёмкость бака-аккумулятора | м3 | 35 |
| Диапазон изменения начальной массовой доли кислорода в исходной воде, в пределах которого обеспечивается требуемое качество воды | мг/кг | 0,02-15 |
| Диапазон изменения начальной массовой доли свободной углекислоты в исходной воде, в пределах которого обеспечивается требуемое качество воды | мг/кг | 0,5-10 |
| Диапазон изменения бикарбонатной щелочности, в пределах которой гарантируется остаточная массовая доля свободной углекислоты в деаэрированной воде | мгэкв/кг | 0,4-0,7 |
1.2.9 Устройство и принцип действия питательного насоса типа ПЭ











