125451 (593110), страница 9
Текст из файла (страница 9)
Па/м.
Линейная потеря давления на участке:
Па.
Из местных сопротивлений на участке есть сальниковый компенсатор (
), следовательно, потеря давления в местном сопротивлении согласно формулы (11) составит:
Па.
Полное падение давления на участке по формуле (7) составит:
Па.
Давление пара в конце участка 3-2, согласно формуле (12) будет равно:
Па.
Участки 2-1 и 1-5.
Принимаем скорость движения пара - 70 м/сек. Тогда согласно формуле (10) внутренний диаметр трубопровода будет равен:
м
Согласно сортаменту труб для паропроводов принимаем к прокладке трубу
с внутренним диаметром 351 мм. Тогда скорость движения пара из выражения (10) определится:
м/сек.
Удельная линейная потеря давления на участке составит:
Па/м.
Линейная потеря давления на участке:
Па.
Местных сопротивлений на участке нет, следовательно, потеря давления на участке будет равна:
Па.
Давление пара в конце участка 5-1 согласно формуле (10) будет равно:
Па.
Расчет падения давления при переходе с участка A-B на B-C, с B-C на C-D, c C-D на D-E (см. рисунок 8).
При переходе используется колено под углом 90º, гладкое R=2d, коэффициент местного сопротивления
, количество колен 3.
Тогда падение давления пара при переходе через местное сопротивление согласно формуле (9) будет равно:
Па.
Расчет падения давления на участке B-C-D-DI (см. рисунок 7).
Согласно формуле (9) удельная линейная потеря давления будет равна:
Па/м.
Линейное падение давления:
, Па.
Расчет падения давления на участке DI-E. Расход пара на турбогенераторы составляет: 13,9 кг/сек. Принимаем скорость движения пара - 70 м/сек. Тогда согласно формуле (10) внутренний диаметр трубопровода определится:
м.
Согласно сортаменту труб для паропроводов принимаем к прокладке трубу
с внутренним диаметром 299 мм. Тогда скорость движения пара из выражения (10) определится:
м/сек.
Удельная линейная потеря давления:
Па/м.
Линейное падение давления:
Па.
Расчет падения давления при переходе с участка D-E на E-F, с E-F на F-G, c F-G на G-H (см. рисунок 7).
При переходе используется колено под углом 90º, гладкое R=2d, коэффициент местного сопротивления
, количество колен 3.
Тогда падение давления пара при переходе через местное сопротивление согласно формуле (11) будет равно:
Па.
Расчет падения давления на участке E-F (см. рисунок 7).
Согласно формуле (9) удельная линейная потеря давления будет равна:
Па/м.
Линейное падение давления:
Па.
На данном участке расположены: измерительная диафрагма и нормальная задвижка. Коэффициент местного сопротивления измерительной диафрагмы
, задвижки нормальной
.
Па.
Полное падение давления на участке:
Па.
Расчет линейного падения давления на участке F-G-H.
Согласно формуле (9) удельная линейная потеря давления будет равна:
Па/м.
Линейное падение давления:
Па.
Суммируя линейные и местные потери давления по всем участкам и вычитая их из давления в начальной точке получаем давление в точке H:
Па. (13)
Таким образом, у потребителей - паровых турбин гарантируется давление свежего пара не ниже 1,034 МПа.
2.4.2 Гидравлический расчет водовода технической воды
В данном подразделе приводится гидравлический расчет водопровода технической воды. Техническая вода поступает на охлаждение конденсаторов турбин из градирен КХП. Градирни вентиляторные №№3, 4, брызгально-капельные производительностью по 2 000 м3/час. На охлаждение обоих конденсаторов требуется 1 800 м3/час. В настоящее время градирни работают не на полную мощность (по охлаждаемой воде), и загрузка их еще на 1 800 м3/час позволит использовать мощность на 100%.
Водопровод спроектирован от насосной №15 оборотного водоснабжения КХП до котельной УСТК. Прокладка водовода воздушная на опорах, общая длина 666 метров. На прямолинейных участках длиной более 50 метров устанавливается двусторонний сальниковый компенсатор. Количество компенсаторов 8. Температурные деформации будут также компенсироваться за счет естественных поворотов трассы.
Исходные данные
Скорость движения воды: принимаем 3 м/сек, длина трассы 666 метров, количество воды 500 кг/сек, эквивалентная шероховатость стенок трубопровода 0,5 мм. Сумма коэффициентов местных сопротивлений определена по литературе /9, 116/ и составляет
. Требуется определить падение давления в паропроводе.
Решение:
Согласно формуле (10) определяем внутренний диаметр трубопровода:
м.
Согласно сортаменту труб для паропроводов принимаем к прокладке трубу
с внутренним диаметром 466 мм. Тогда скорость движения пара из выражения (10) определится:
м/сек.
Коэффициент гидравлического трения
по формуле Б.Л.Шифринсона:
, (14)
Эквивалентная длина
, м, местных сопротивлений равна:
, (15)
м.
Приведенная длина
, м, трубопровода равна:
, (16)
, м.
Удельное линейное падение
, Па, давления:
, (17)
, Па.
Полное падение давления согласно формуле (8) определится:
, Па.
По каталогу выбираем три насоса (два в работе параллельно подключенных и один в резерве) 1Д1250-63а.
Насосы устанавливаются в здании существующей насосной станции №15, на месте демонтированных в настоящее время агрегатов.
Параметры насоса 1Д1250-63а:
Мощность электропривода - 250 кВт
Создаваемый напор - 52,5 м
Производительность - 1100 м3/час
2.5 Тепловой расчет паропровода
Для уменьшения потерь теплоты в окружающую среду и обеспечения безопасности труда персонала все трубопроводы, имеющие температуру теплоносителя выше 50 ºС внутри помещений и выше 60 ºС вне помещений, должны иметь тепловую изоляцию. Температура поверхности изоляции должна быть не выше 45 ºС внутри помещений и не более 60 ºС на открытом воздухе.
Потерю теплоты
, Вт/м, через изоляцию на 1 метр длины трубопровода определяют по формуле:
(18)
где
- температура среды в трубопроводе, ºС;
- температура окружающего воздуха, ºС;
- суммарное термическое сопротивление, м׺С/Вт.
(19)
где
,
- термическое сопротивление внутренней и наружной поверхностей изолированного трубопровода, м׺С/Вт;
,
- термическое сопротивление стенки трубы и слоя изоляции, м׺С/Вт;
(20)
где
- внутренний диаметр трубы, м;
- коэффициент теплоотдачи от теплоносителя к стенке трубы, Вт/м2׺С.
(21)
где
- наружный диаметр трубы, м;
- коэффициент теплоотдачи от стенки трубы к изоляции, Вт/м2׺С.
(22)
где
- теплопроводность стенки трубы, Вт/м׺С;
(23)
где
- теплопроводность тепловой изоляции, Вт/м׺С;
- диаметр тепловой изоляции, м.
Величина
, связана уравнением теплоотдачи с заданной температурой наружной поверхности изоляции:
(24)
где
- температура наружной поверхности изоляции.
Необходимое значение диаметра тепловой изоляции определяется из совместного решения уравнений (18) и (24).
2.5.1 Тепловой расчет наружного участка паропровода
Принимаем следующие исходные данные:
внутренний диаметр трубы - 351 мм;
наружный диаметр трубы - 377 мм;
коэффициент теплоотдачи от пара к стенке - 10 000 Вт/м2׺С;
коэффициент теплоотдачи от наружной поверхности изоляции к окружающему воздуху - 20 Вт/м2׺С;
теплопроводность стенки стальной трубы - 58 Вт/м׺С.
в качестве изоляционного материала выбираем минеральную вату с коэффициентом теплопроводности - 0,08 Вт/м2׺С
температура пара - 280 ºС;
средняя температура наружного воздуха зимнего периода - -8 ºС
температура поверхности изоляции - 30 0 ºС.
Определяем необходимую толщину тепловой изоляции.
По формулам (19)-(23) определяем термическое сопротивление изолированного трубопровода:
м׺С/Вт;
, м׺С/Вт;
, м׺С/Вт;
Суммарное термическое сопротивление трубопровода:
;
; (25)
Для нахождения диаметра тепловой изоляции решаем совместно уравнения (18) и (24):
;
м. Тогда толщина изоляции 77 мм.
Для эффективной работы тепловой изоляции необходимо, чтобы соблюдалось условие:
(26)
(27)
м.
Условие (26) соблюдается.
Тогда термическое сопротивление паропровода согласно формуле (25) будет равно:
м׺С/Вт.
Определяем падение температуры пара по длине наружного участка.
Коэффициент местных потерь теплоты
.
Расход пара
кг/сек.
Длина паропровода
м.
Теплоемкость пара
кДж/кг׺С.
Температура в конце участка будет равна:
(28)
ºС.











