125109 (593070), страница 7
Текст из файла (страница 7)
Схема замещения представляет собой вариант расчетной схемы, в которой все элементы заменены сопротивлениями, а магнитные связи – электрическими. Точки короткого замыкания выбираются на ступенях распределения и на конечном электроприемнике. Точки короткого замыкания нумеруются сверху вниз, начиная от источника.
-
Составляем схему замещения (рисунок 10.1) и нумеруем точки короткого замыкания в соответствии с расчетной схемой.
-
вычисляем сопротивления элементов и наносим на схему замещения.
– Для системы:
(10.1)
где
– ток системы, А;
- полная мощность трансформатора, кВ·А;
- напряжение системы, кВ.
А
Данные для трансформатора берем по таблице 1.9.1 [15.60]
Rт = 2 мОм, Хт = 8,5 мОм, Zт = 81 мОм
Данные для автоматов берем по таблице 1.9.3 [15.60]
1SF R1SF = 0.1 мОм Х1SF = 0.1 мОм RII1SF = 0.15 мОм
АII/2 R А II/2=0,15 мОм Х А II/2= 0,17 мОм RII А II/2= 0.4 мОм
А1 RА1 = 0,4 мОм ХА1 = 0,5 мОм RII A1 = 0,6 мОм
– Для кабельной линии КЛ 1
Данные для кабельной линии берем по таблице 1.9.5 [15.60]
КЛ 1:
Так как в схеме один кабель, то:
– Для кабельной линии КЛ 2
Данные для кабельной линии берем по таблице 1.9.5 [15.60]
КЛ 2:
Так как в схеме два параллельных кабеля, то:
Rкл2=
– Для кабельной линии КЛ 3
Данные для кабельной линии берем по таблице 1.9.5 [15.60]
КЛ 3:
Так как в схеме один кабель, то:
– Для шинопровода
Данные для шинопровода берем по таблице 1.9.7 [15.60]
Для ступеней распределения берем данные по таблице 1.9.4 [15.60]
Rc1 = 20 мОм Rc2 = 25 мОм
3. Упрощаем схему замещения, вычисляем эквивалентные сопротивления на участках между точками короткого замыкания и наносим на схему (рисунок 10.3).
Rэ1 = Rкл1 + Rт + R1SF + RII1SF + Rc1 (10.2)
Rэ1 = 28,1 + 2 + 0,1 + 0,15 + 20 = 50,35 мОм
Хэ1 = Хкл1 + Хт + Х1SF (10.3)
Хэ1 =2,8 + 8,5 +0,1 = 11,4 мОм
Rэ2 = RАII/2 + RIIA/2 + Rкл2 + Rш + Rc2 (10.4)
Rэ2 = 0,15 + 0,4 + 0,425 + 0,42 + 25 = 26.39 мОм
Хэ2 = ХАII/2 + Хкл2 + Хш (10.4)
Хэ2 = 0,17 + 0,4 + 0,42 = 0,99 мОм
Rэ3 = RА1 + RIIA1 + Rкл3 (10.5)
Rэ3 = 0,4 + 0,6 + 40,5 = 41,5 мОм
Хэ3 = ХА1 + Хкл3 (10.6)
Хэ3 = 0,5 + 12 = 12,5 мОм
4. Вычисляем сопротивления до каждой точки короткого замыкания и заносим данные в «Сводную ведомость».
Rк1 = Rэ1 = 50,35 мОм Хк1 = Хэ1 = 11,4 мОм
(10.7)
мОм
Rк2 = Rэ1 + Rэ2 = 50,35 + 26,39 = 76,74 мОм
Хк2 = Хэ1 + Хэ2 = 11,4 + 0,99 = 12,39 мОм
мОм
Rк3 = Rк2 + Rэ3 = 76,74 + 41,5 = 118,2 мОм
Хк3 = Хк2 + Хэ3 = 12,39 + 12,5 =24,89 мОм
мОм
Rк1/ Хк1 = 50,35/11,4 = 4,4
Rк2/ Хк2 = 76,74/12,39 = 6,2
Rк3/ Хк3 = 118,2/24,89 = 4,74
5. Определяем коэффициент Ку и q
(10.8)
где Ку – ударный коэффициент, равный 1 [15.59]
(10.9)
где q – коэффициент действующего значения ударного тока
6. Определяем трехфазные и двухфазные точки короткого замыкания и заносим в «Сводную ведомость».
(10.10)
кА
кА
кА
(10.11)
где
– действующее значение ударного тока, кА
кА
кА
кА
(10.12)
кА
кА
кА
(10.13)
кА
кА
кА
Таблица 10.1 Сводная ведомость токов КЗ
| Точка КЗ | Rк, мОм | Хк, мОм | Zк, мОм | Rк / Хк, | Ку | q | кА | кА | кА | кА | Zп, мОм | кА |
| К1 | 50,35 | 11,4 | 51,62 | 4,4 | 1 | 1 | 4,48 | 6,32 | 4,48 | 3,87 | 20 | 5,47 |
| К2 | 76,74 | 12,39 | 77,73 | 6,2 | 1 | 1 | 2,82 | 3,98 | 2,82 | 2,43 | 46,7 | 2,98 |
| К3 | 118,2 | 24,89 | 120,79 | 4,74 | 1 | 1 | 1,81 | 2,55 | 1,81 | 1,56 | 129,9 | 1,4 |
7. составляется схема замещения для расчета 1-фазных токов КЗ (рисунок 10.2) и определяются сопротивления.
Рисунок 10.2
Для кабельных линий:
Хпкл2 = х0п · L кл2 = 0,15 · 5 = 0,75 мОм
R пкл2 =2 r0 · L кл2 = 2 · 0,085· 5 = 0,85 мОм
R пш = r0 пш · Lш = 0,42 · 2 = 0,84 мОм
Х пш =х0 пш · Lш = 0,42 · 2 = 0,84 мОм
R пкл3 =2 r0 · L кл3 = 2 · 0,27· 150 = 81 мОм
Хпкл3 = х0п · L кл3 = 0,15 · 150 = 22,5 мОм
Z п1 = 20 мОм
R п2 = Rс1 + R пкл2 + R пш + Rс2 = 20 + 0.85 + 0.84 + 25 = 46.69 мОм
Хп2 = Хпкл2 + Х пш = 0,75 + 0,84 = 1,59 мОм
Z п2 =
мОм
R п3 = R п2 + R пкл3 =46,69 + 81 = 127,7 мОм
Хп3 = Хп2 + Хпкл3 = 1,59 + 22,5 = 24,09 мОм
Z п3 =
мОм
= 0,23·10³/ (15 + 81/3) = 5,47 кА
= 0,22·10³/(46,7 + 81/3) = 2,98 кА
= 0,22·10³/(129,9 + 81/3) = 1,4 кА
Результаты расчета токов короткого замыкания представлены в «Сводной ведомости токов КЗ», таблица 10.1.
10.1 Проверка элементов цеховой сети
Для уменьшения последствий аварий в электрической сети при коротких замыканиях необходимо обеспечить быстрое отключение поврежденного элемента сети, выбирать аппаратуру таким образом, чтобы она была устойчивой при кратковременном воздействии тока короткого замыкания.
Аппараты защиты проверяют на:
– надежность срабатывания;
– отключающую способность;
– отстройку от пусковых токов.
1. Согласно условиям по токам короткого замыкания автоматы защиты проверяются:
а) на отключающуюся способность
1SF:
31 > 1,41·4,48 кА
АII/2:
25 > 1,41·2,82 кА
А1:
12,5 > 1,41·1,81 кА
Автоматы при коротком замыкании отключаются не разрушаясь.
б) на надежность срабатывания
1SF:
3,87 ≥ 3·1,28 кА
АII/2:
2,43 ≥ 3·0,4 кА
А1:
1,56 ≥ 3·0,16 кА
Надежность срабатывания автоматов обеспечена.
в) на отстройку от пусковых токов. Учтено при выборе К0 для I у(кз) каждого автомата.
I у(кз) ≥ Iп для электродвигателя
I у(кз) ≥ Iпик для распределительного пункта
2. Согласно условиям проводники проверяются:
– на термическую стойкость
КЛ 2 (1СШ – 1ШР)
; 2 х 185 > 40,4 мм²
(10.1.1)
где
– термический коэффициент, для алюминия равный 11 [15.72];
мм²
- приведенное время действия токов короткого замыкания, равный 1,7 (1 ступень) [15.72];
КЛ 3 (1ШР – Трансформатор М2/1)
; 120 > 18,9 мм²
мм²
По термической стойкости кабельные линии удовлетворяют.
– на соответствие выбранному аппарату защиты. Учтено при выборе сечение проводника
220 А > 1·1,25·160 = 200 А 220 А > 200 А
3. Согласно условиям шинопровод проверяется:
– на динамическую стойкость:
(10.1.2)
где
– допустимое механическое напряжение в шинопроводе, Н/см²;
– фактическое механическое напряжение в шинопроводе, Н/см².
Для медных шин
Н/см, [15.70]
(10.1.3)
(10.1.4)
где Ммакс – наибольшей изгибающей момент, Н·см;
W – момент сопротивления сечения, см³;
l – длина участка, км;
- максимальное усилие на шину, Н.
Момент сопротивления находим по формуле [15.69]:
W = b·h²/6
Так как Lш = 2 м (расстояние от начала ответвления), то достаточно иметь один пролет l = 3 м, тогда:
(10.1.5)
где l – длина пролета между соседними опорами, см;
а – расстояние между осями шин, см;
iу – ударный ток короткого замыкания, трехфазный, кА.
Н
см³
Ммакс = 0,125 · 83,6 · 3 · 10² = 3135 Н·см
Н/см
(14·10³)
(0,591·10³)
Шинопровод динамически устойчив.
– на термическую стойкость:
Sш ≥ Sш.тс (10.1.6)
где Sш – фактическое сечение шинопровода, мм²;
Sш.тс – термически стойкое сечение шинопровода, мм²;
Sш = b·h = 5·80 = 400 мм²
мм²
где
= 6 = для меди [15.70]
(400 мм²) Sш ≥ Sш.тс (22 мм²)
Шинопровод термически устойчив, следовательно, он выдержит кратковременно нагрев при коротком замыкании до 200ºС.
11. Релейная защита цехового трансформатора
В условиях эксплуатации возможны повреждения отдельных элементов системы электроснабжения.
Релейной защитой называют комплект специальных устройств обеспечивающий автоматическое отключение поврежденной части электрической сети, установки.
Релейная защита и автоматика должны удовлетворять ряду требований, основными из которых являются селективность, чувствительность, быстродействие, надежность.
















