125109 (593070), страница 10
Текст из файла (страница 10)
Для стимулирования проведения мероприятий по компенсации реактивной мощности на действующих предприятиях Госэнергонадзором установлена шкала скидок (–) и надбавок (+) к тарифу на электроэнергию.
а) б)
Рисунок 14.2 Схема замещения (а) и векторная диаграмма цепи линия – приемник электроэнергии (б) при параллельном включении конденсаторов.
Компенсирующие устройства
Для компенсации реактивной мощности используются батареи конденсаторов, синхронные машины и специальные статические источники реактивной мощности.
Батарея конденсаторов (БК) – специальные емкостные КУ, предназначенные для выработки реактивной мощности. В настоящее время выпускаются комплектные конденсаторные установки (ККУ) серии УК – 0,38 на напряжение 380 В мощностью 110…900 кВар (таблица 14.1) и серии УК-6/10 мощностью 450…1800 кВар (таблица 14.2).
Таблица 14.1 Технические данные статических КУ напряжением до 1 кВ
| Тип установки | Номинальная мощность, кВар | Число х мощность регулируемых ступеней, кВар |
| УК – 0,38–110Н | 110 | 1 х 110 |
| УК – 0,38–220Н | 220 | 2 х 110 |
| УК – 0,38–320Н | 320 | 3 х 110 |
| УК – 0,38–430Н | 430 | 4 х 110 |
| УК – 0,38–540Н | 540 | 5 х 110 |
| УК – 0,38–150Н | 150 | 1 х 150 |
| УК – 0,38–300НЛ, НП | 300 | 2 х 150 |
| УК – 0,38–450НЛ, НП | 450 | 3 х 150 |
| УК – 0,38–600НЛ, НП | 600 | 4 х 150 |
| УК – 0,38–900НЛ, НП | 900 | 6 х 150 |
При отключении конденсаторы сохраняют напряжение остаточного заряда, представляющее опасность для персонала и затрудняющее работу выключателей. По условиям безопасности требуется применение разрядных устройств. В качестве разрядных устройств применяются два однофазных трансформатора на напряжения (НОТ). В новых конденсаторах применяют встроенные разрядные сопротивления. При индивидуальной компенсации электроприемника разрядные сопротивления не требуются.
Измерение силы тока в цепи БК осуществляется тремя амперметрами (для контроля за целостью предохранителей и нормальной работой каждой фазы) и
счетчиком реактивной энергии. Для автоматического отключения батареи при повышении напряжения в данном узле сети свыше заданного значения и для включения при понижении напряжения предусматривается специальная автоматика.
Для расчетов и анализа влияния поперечной емкостной компенсации на работу сети рассмотрим векторную диаграмму цепи (рисунок 14.2) (при параллельном включении приемника электроэнергии Rп, ХLп и батареи конденсаторов Хс к линии Rл, Хл). Вследствие параллельного нагрузке включения емкости С угол φ уменьшился от φ1 до φ2, сила тока нагрузки от приемника – от I1 до I2, т.е. произошла разгрузка линии по току на ΔI = I1 – I2. разгрузились на то же значение и генераторы энергосистемы благодаря генерации конденсаторной батареи мощности Qс в месте установки приемников. Кроме того, сеть и генераторы разгрузились вследствие уменьшения потерь на ΔРк и ΔQк, так как поток реактивной мощности снизился на Qс:
;
(14.8)
где R, Х – эквивалентные сопротивления цепи энергосистема – потребитель;
Uн – номинальное напряжение сети.
Для проектируемой сети снижение силы тока на ΔI позволяет уменьшить площадь сечения проводов линии на ΔF = ΔI / Jэк, где Jэк – экономическая плотность тока в линии. Соответственно снижаются установленная мощность трансформаторов и потеря напряжения в сети за счет уменьшения потока реактивной мощности на Qс:
(14.9)
Из векторной диаграммы (рисунок 14.2) можно определить емкость С и реактивную мощность Qс, конденсаторов, необходимую для повышения коэффициента мощности от cos φ2:
(14.10)
(14.11)
Основной недостаток конденсаторов – при понижении напряжения в сети они снижают выдачу реактивной мощности пропорционально квадрату напряжения, в то время как требуется ее повышение. Регулирование мощности КБ осуществляется только ступенями, а не плавно и требует установки дорогостоящей коммутационной аппаратуры.
Таблица 14.2 Технические данные статических КУ напряжением выше 1 кВ
| Тип установки | Номинальная мощность, кВар | Число х мощность регулируемых ступеней, кВар |
| УК-6/10–450 ЛУЗ, ПУЗ | 450 | - |
| УК-6/10–675 ЛУЗ, ПУЗ | 675 | - |
| УК-6/10–900 ЛУЗ, ПУЗ | 900 | - |
| УК-6/10–1125 ЛУЗ, ПУЗ | 1125 | - |
| УК-6/10Н-900 Л, П | 900 | 1 х 900 |
| УК-6/10Н-1350 Л, П | 1350 | 1 х 1350 |
| УК-6/10Н-1800 Л, П | 1800 | 2 х 1800 |
Синхронные машины могут генерировать и потреблять реактивную мощность, т.е. оказывать на электрическую сеть воздействие, тождественное емкости и индуктивности. Из курса «электрические машины» известно, что при перевозбуждении синхронной машины генерируется реактивная составляющая тока статора и ее значение растет при увеличении силы тока возбуждения. Векторная диаграмма подведенного от сети напряжения и тока в статора синхронной машины имеет тот же вид, что и диаграмма подведенного напряжения и тока в конденсаторной батарее (рисунок 14.2). Перевозбужденная синхронная машина генерирует передающий ток, подобно емкости.
В системах электроснабжения предприятий используют синхронные машины всех видов. Наиболее широкое применение находят синхронные двигатели (СД) в приводах производственных машин и механизмов, не требующих частоты вращения.
Синхронные генераторы (СГ) обладают, как и СД, плавным и автоматическим регулированием генерации реактивной мощности в функции напряжения сети. В отличие от СД передача реактивной мощности от генераторов осуществляется на значительное расстояние (даже от собственных электростанций предприятий). Поэтому использование генераторов в качестве источников реактивной мощности ограничивается технико-экономическими условиями режима энергосистемы.
Синхронные компенсаторы (СК) предназначены специально для выработки и потребления реактивной мощности. При большом дефиците реактивной мощности в точке подключения потребителей, когда требуется в некоторых случаях плавное и быстродействующее средство регулирования напряжения, оказывается выгодным ввод СК. При наличие резкопеременной реактивной нагрузки зона применения СК расширяется.
Недостатки СК:
– повышенные потери реактивной мощности;
– повышенные удельные капитальные вложения;
– большая масса и вибрация, из-за чего необходима установка СК на массивных фундаментах;
– необходимость применения водородного и воздушного охлаждения с водяными охладителями;
– необходимость постоянного дежурства эксплуатационного персонала на подстанциях с синхронными компенсаторами.
Кроме того, заданную мощность конденсаторов можно дробить для максимального приближения их к потребителям или при необходимости наращивать мощность БК в процессе роста нагрузок, что невозможно для СК.
Технико-экономическое обоснование выбора средств компенсации реактивной мощности
Выбор средств, способов компенсации и мощности компенсирующих устройств, распределение их по сетям напряжением до 1000 В и более проводятся на основании технико-экономических расчетов по минимуму приведенных затрат.
З = З0 + З1 · Q + З2 · Q² (14.5)
где З – приведенные затраты, руб.;
Q – генерируемая реактивная мощность, МВар;
З0 – постоянная составляющая затрат, не зависящая от генерируемой мощности;
З1 – удельные затраты на 1 МВар генерируемой мощности, руб./МВар;
З2 – удельные затраты на 1 МВар² генерируемой мощности, руб./МВар².
Для определения оптимальной реактивной мощности сравниваются затраты на выработку реактивной мощности синхронными источниками с затратами на выдачу той же мощности конденсаторами:
Q1 = (З1к – З1сд)/2З2сд (14.6)
На промышленных предприятиях основные потребители реактивной мощности присоединятся к сетям до 1000 В. Источниками реактивной мощности здесь являются БК, а недостающая часть перекрывается перетоком из сети высшего напряжения – с шин напряжением 6…10 кВ от СД, БК, генераторов местной электростанции или из сети электросистемы.
Задача оптимизации реактивной мощности сводится к определению таких значений реактивной мощности каждого источника, при которых суммарные затраты достигают минимума при соблюдении баланса реактивной мощности.
Если по заданию энергоснабжающей организации из системы можно получить Qз, то должно быть скомпенсировано Qк = 1.15 (Qв – Qэ) синхронными двигателями и конденсаторами. Коэффициент 1,15 учитывает необходимый 15%-ный резерв реактивной мощности на предприятии, для чего требуется увеличить мощность конденсаторов Qк.
Размещение компенсирующих устройств
Рациональное размещение компенсирующих устройств зависит от многих факторов, в частности от соотношения мощностей синхронных и асинхронных двигателей, установленных в сетях высшего и низшего напряжения.
Дополнительным источником реактивной мощности в распределительных сетях служат БК, место которых определяется в результате приведенных расчетов, так как БК можно устанавливать в сетях напряжением 6…10 кВ или 0,4 кВ. при этом следует учитывать, что разукрупнение мощности БК приводит к увеличению удельных затрат на аппаратуру, измерительные приборы, конструкции и пр. поэтому не рекомендуется применение БК на напряжение 6…10 кВ единичной мощностью менее 400 кВар, если присоединение выполняется через общий выключатель с силовым трансформатором или другим приемником электроэнергии, то единичная мощность БК снижается до 100 кВар.
В связи с внедрением в промышленности СД средней мощности 500…1600 кВт вопрос о размещении дополнительных компенсирующих устройств приобретает важное значение и усложняется.
Максимальная реактивная мощность, которую может генерировать СД
(14.7)
где
– коэффициент дополнительной перегрузки.
Приняв cos φ = 0,9;
= 0,92;
= 1,2, получим
(14.8)
При наличии СД в узле нагрузки они должны быть оптимально использованы для повышения коэффициента мощности узла сосредоточенной нагрузки напряжением 6…10 кВ, расположенной вблизи установки СД.
Использовать всю реактивную мощность СД для повышения cos φ в цехах предприятия нецелесообразно, так как переток ее по ЛЭП напряжением 6…10 кВ вызывает дополнительную нагрузку на них и может привести к завышению мощности трансформатора, т.е. экономически он не всегда оправдан. Поэтому компенсация реактивной мощности потребителей проводится с широким применением установок БК.
В отдельных случаях необходимо проверять экономичность установки БК сопоставлением приведенных затрат на установку БК и на потери в СД на генерацию реактивной мощности. Необходимость в установке БК обычно возникает, если реактивная мощность СД недостаточна для компенсации.
14.4 Регулирование работы компенсирующих устройств
При минимальной нагрузке потребителями мощность конденсаторной батареи должна быть уменьшена, так как поступление избыточной емкостной нагрузки в сеть вызывает повышение напряжения и увеличивает потери электроэнергии. Для более экономичной работы компенсирующих устройств применяют автоматическое регулирование мощности конденсаторных батарей и других видов КУ.
Регулирование может осуществляться в зависимости от силы тока нагрузки, времени суток, коэффициента мощности и напряжения. Наибольшее применение получило регулирование по напряжению, применяемое в тех случаях, когда кроме повышения коэффициента мощности требуется поддержать напряжение потребителей на уровне номинального.
Рассмотрим схему автоматического ступенчатого регулирования мощности конденсаторной установки по уровню напряжения в сети (рисунок 14.3). Схему можно использовать в конденсаторных установках напряжением свыше 1000 В, но преимущественно – в сетях напряжениям до 1000 В. В последнем случае реле напряжения подключают непосредственно к сети. При понижении напряжения срабатывает реле напряжения 1Н и, замкнув свой контакт в цепи реле времени 1В, с выдержкой времени включает конденсаторную установку. При повышении напряжения срабатывает реле 2Н и реле 2В отключает установку от сети. Для более точной настройки схемы в цепи реле 1Н и 2Н включены добавочные сопротивления ДС для отстройки от кратковременных колебаний напряжения выдержки времени реле принимаются равными 2 – 3 мин.
Для ручного управления установкой ключ управления переводится в положение Р. Подача напряжения на соленоид включения СВ привода выключателя осуществляется кнопкой включения КВ, отключение выключателя – кнопкой КО в цепи соленоида отключения СО. Отключение защитой осуществляет промежуточное реле П, которое срабатывает при кратковременном замыкании контакта З реле защиты. Замкнув контакты в цепи своей обмотки и в цепи СО, реле П самоудерживается, обеспечивая надежное отключение выключателя, и предотвращает включение на короткое замыкание, разомкнув контакт П в цепи СВ. Схема возвращается в исходное положение после срабатывания релейной защиты нажатием кнопки КОЗ, в результате чего реле П теряет питание.
Многоступенчатое автоматическое регулирование комплектными конденсаторными установками серии УК – 0,38 мощностью 220 до 540 кВар и серии УК-6 (10) мощностью от 660 до 1800 кВар обеспечивается устройствами типа АРКОН.
















