124468 (592956), страница 4
Текст из файла (страница 4)
Експерименти підтверджуються теоретичними розрахунками, з яких слідує, , що навантаження на дробильну плиту роз приділяється рівномірно. Тому для визначення зусиль в елементах дробарки рівнодійну навантаження на дробильну плиту слід розрахувати прикладеною до середини по висоті.
-
Станина
Станина являє собою зварні або ливарні рами, точний розрахунок яких являє значні труднощі. Загалом, для наближеного визначення середніх напружень, що виникають в станках станини, її розраховують як плоску раму. Більш сучасний і більш точний розрахунок міцності і жорсткості станини виконують по рекомендованому співробітниками ВНІІбуддормаша методу кінцевих елементів [24].
-
Ексцентриковий вал
Підлягає згину і крученню, і його розраховують на витривалість по напруженням, що виникають, що виникають при попаданні в камеру подрібнення не дробильного тіла. [6, ст.. 90].
Вал розраховують, як вільно лежачу двоопорну балку, що зазнає складне комбіноване навантаження.
Крутний момент від шківа – маховика:
Колова сила на шківі-маховиці:
Сила натягу пасів клинопасової передачі:
Для знаходження реакції опори RA запишемо суму моментів всіх сил відносно опори «В».
З метою спрощення розрахунків прийняте допущення – сила Тр направлена вертикально вверх
Виходячи з розрахункової схеми, максимальний згинаючий момент в середині ексцентрикового вала:
Крутний момент, що зазнає ексцентриковий вал:
Сумарний момент:
Виходячи з цього діаметр ексцентрикового вала рівний:
Діаметр шийки корінних підшипників ексцентрикового валу, визначають записавши рівняння згинаючого моменту моменту відносно опори «В».
Знак «мінус» показує, що момент відносно точки «В» направлений в протилежну сторону згідно зображених сил..
Визначимо діаметр шийки вала з умови навантаження кручення:
Приймаємо dш.
-
Шатун
При робочому ході рухомої щоки, коли відбувається подрібнення матеріалу, шатун переміщується з нижнього на верхнє положення, і в ньому виникає ротягуюче зусилля «Р», яке змінюється по величині від нуля (в нижньому положенні шатуна) до максимуму (у верхньому положенні шатуна).
З достатньою для практичних розрахунків точністю приймають, що зусилля в шатуні зростає прямо пропорційно переміщенню, тоді середнє значення цього зусилля:
,
Робота, що виконується цією силою за один оберт ексцентрикового вала:
Де е – ексцентриситет вала, м;
Pmax – максимальне зусилля в шатуні, Н;
Тоді розтягуючи зусилля в шатуні:
;
Так як
Звідси
Розтягуючи зусилля в шатуні, при визначенні його профіль і розмірів перерізу, внаслідок ударного характеру навантаження, та можливості попадання в дробарку предметів, що не подрібнюються, приймають в чотири рази більше максимального:
Головка шатуна роз’ємна , з’єднується болтами, які працюють на розтяг. Діаметр болтів рівний:
-
Рухома щока
Рухому щоку розраховують як балку, з однієї сторони закріплену шарнірно, з іншої опирається на розпірну плиту.
Частіше всього при попаданні в камеру подрібнення недробимого тіла навантаження прикладене в нижній частині щоки. Розрахувати в цьому випадку слід на граничну міцність (по границі текучості).
Коефіцієнт запасу міцності рекомендується приймати a = 1,5…2,5 [5, ст.. 24].
Рухома щока розраховується на згин під дією сили Т, як балка на двох опорах, одна з яких шарнірна
Нормальна складова сили Т, що здійснює подрібнення кусків матеріалу.
Де
Сила Тн буде максимальною, якщо в робочій камері дробарки знаходиться кусок матеріалу, який має найбільший розмір.
Рухома щока, як і шатун, повинна мати мінімально можливу масу і володіти достатньою міцністю. З цією метою, наприклад, її обладнують ребрами жорсткості.
Розрахункове напруження згину рухомої щоки повинно бути менше допустимого [σзг] для вибраного матеріалу щоки:
Тангенціальна складова сили Т, що діє на підшипники, і вигинаючи вісь підвісу рухомої щоки
Згинаюча сила Q, яка прикладена в точці контакту щоки з куском дробленого матеріалу
-
Механізм регулювання вихідної щілини
В механізмі регулювання вихідної щілини в дробарці із складним рухом щоки повзун легко розраховують як балку на двох опорах, навантажену рівномірно розподіленим навантаженням. Найбільш несприятливим випадком для повзуна слід рахувати положення коли, клини механізму розвинуті, а опорні реакції клинів прийняті зосередженими.
Слід також провести перевірковий розрахунок клинів і стяжного гвинта на розтяг і на зріз різьби.
-
Розмірна плита
Розмірна плита працює в умовах пульсуючого циклу навантаження в умовах навантаження при подачі в дробарку недробимих матеріалів. В зв’язку з цим розпірну плиту необхідно розраховувати на граничну міцність і витривалість.
В загальному випадку розпірна плита приймає позацентрове зтиснення, яке виникає в результаті порушення внаслідок порушення правильності взаємного розміщення опорних сухарів розпірної плити при зміні вихідної щілини дробарки, а також внаслідок зношення розмірних плит і сухарів.
Зусилля, що діє вздовж розпірної плити, досягає максимального значення в той момент, коли вона займає крайнє верхнє положення:
Де L – довжина щоки, м;
l – відстань від ексцентрикового вала до точки, в якій стискаюча сила досягає максимального значення, l=L/2, м.
Площа поперечного перерізу розпірної плити, що працює на стиск:
Де σст – допустиме напруження на стиск, σст=500 МПа.
При ширині «b» розпірної плити її товщина дорівнює:
Згідно конструктивних рішень h=10 мм.
-
Характеристика маховика
Маховик розраховують з врахуванням кутової швидкості, яка зменшується від ωmax до ωmin при наближенні щок одна до одної, коли відбувається подрібнення, причому робота здійснюється як за рахунок енергії двигуна, так і за рахунок кінетичної енергії маховика. При холостому ході енергія двигуна витрачається лише на збільшення кінетичної енергії маховика і кутова швидкість останнього зростає від ωmin до ωmax . коливання кутової швидкості залежить від ступеню нерівномірності обертання маховика, який для щокових дробарок приймається рівною 0,015…0,035. [3, ст.. 151].
Якщо позначити кутову швидкість маховика на початку робочого ходу через ω1, а в кінці робочого ходу через ω2, то частина роботи, що виконується за рахунок кінетичної енергії маховика:
Де j – момент інерції маховика, кг*м2.
Розклавши вираз
І позначивши
через середню кутову швидкість маховика ωф, а ω1-ω2/ωср через ступінь нерівномірностей обертання маховика δ, отримаємо:
Звідси
Примічаючи до уваги, що
та
Визначаємо маховий момент маховика:
Тоді
Але
Де v – колова швидкість на ободі маховика, приймаємо з умови міцності, v=15 м/с. [3, ст.. 176].
Отже
Де m – маса маховика, кг.
-
Розрахунок редуктора сумісної дії ексцентрикових валів
На початку розрахунку визначимо силові та кінематичні параметри привода:
-
Визначаєм потужності на валах привода.
-
Визначаєм кутові швидкості валів привода:
-
Визначаєм крутні моменти на валах привода:
Результати розрахунків зводимо в таблицю 2.1.
Таблиця 2.1.
Результати кінематичного і силового розрахунків приводу.
| Парам. №валу | N, кВт | ω, рад/с | М, Нм | Ugj | Uд заг |
| 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 105,0 | 1,18 | 88983 | 4 5 1 0,2 | 4,0 |
| 2 | 100,8 | 0,29 | 343586 | ||
| 3 | 97,78 | 0,06 | 1629667 | ||
| 4 | 94,84 | 0,06 | 1580667 | ||
| 5 | 92,0 | 0,29 | 317241 |
Розрахунок циліндричної зубчатої передачі.
-
Кінематична схема передачі та вихідні дані для її розрахунку.
Таблиця 2.2.
Вихідні дані для розрахунку передачі
| Парам. №валу | N, кВт | ω, рад/с | М, Нм | Ugj | Uд заг |
| 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 100,8 | 0,29 | 343586 | 5 | 4,0 |
| 3 | 97,78 | 0,06 | 1629667 |
-
Вибір матеріалу і визначення допустимих напружень.
-
Матеріали зубчатих коліс.
-
Так, як до проектуючої задачі не подаються жорсткі вимоги по габаритам, то для виготовлення зубчатих коліс прийняті матеріали, подані в табл.. 2.3.
Таблиця 2.3. Матеріали зубчатих коліс
| Матеріал | Термообробка | Границя текучості, σт МПа | Твердість НВ | |
| Шестерня | Сталь 50 | Нормалізація | 380 | 180 |
| Колесо | Сталь 40 | Нормалізація | 340 | 854 |
-
Допустимі контактні напруження.















