124052 (592892), страница 2
Текст из файла (страница 2)
Известно, что ПКМ из полиимидов сохраняют работоспособность в интервале температур от 196С до 400С. Жесткость макромолекул и высокая полярность их звеньев в сочетании с высокой концентрацией циклов обусловили неплавкость и нерастворимость большинства высокомолекулярных линейных полиимидов. Температура их размягчения (390–430С) приближается к температуре деструкции (420–460С), а вязкость размягченного полиимида достигает 10 8-10 9 Па с. / 5 /
Нерастворимость и неплавкость полиимидов создает непреодолимые трудности при попытках изготовить наполненный пластик и изделие из него традиционными методами и на типовом оборудовании. Порошки полиимидов предложено смешивать с порошкам наполнителей и перерабатывать методом спекания в заготовки простых форм при температурах 400–450С и давлениях 100–150 МПа с последующей механической обработкой в изделия.
Чтоб добиться растворимости полимера на стадии наполнения и плавкости полуфабриката в период формообразования изделий были синтезированы различного типа форполимеры и олигомеры. В которых после окончания формообразования изделия завершается переход в высокомолекулярный линейный или сетчатый полиимид. Однако, форполимеры (полиамидокислоты, полиамидоэфиры) и олигомеры (олигоамиодокислоты, олигоимиды) растворимы лишь в высококипящих амидных растворителях.
Чтобы уменьшить или вовсе исключить применение высококипящих растворителей на стадии наполнения и обеспечить необходимую степень наполнения за один цикл пропитки, была предложена технология РМR (полимеризация мономерных реагентов на поверхности наполнителя). Ее особенность заключается в том, что наполнитель совмещают с раствором смеси исходных компонентов будущего полиимида. Если в качестве растворителей использовать низшие сирты, то температура их испарения совпадает с температурой стадии процесса образования полиимида. При более высокой температуре, создаваетой во время формования изделия, заканчивается химическая реакция образования сетчатого полиимида./6/.
2.3 Характеристика имидных связующих АПИ и материалов на их основе
В настоящее время известно, что наилучшей теплостойкостью обладают материалы на основе гетероциклических полимеров – полиимидов. На их основе разработаны марки полимерных материалов. В России составы такого типа известны под марками СП (НИИПМ) и АПИ-2 (МАТИ).
Составы АПИ-2 представляют собой смесь трех имидообразующих мономеров. При их взаимодействии образуется олигоимид, содержащий – связи в концевых звеньях. Такие олигоимиды переходят в сетчатый полиимид (отверждаются) по реакции пиролитической полимеризации. В составе АПИ-2 (зарубежные аналоги PMR-11, 15, LARC-160) удаление растворителя, образование олигоимида, его превращение в сетчатый полиимид проходит в строгой последовательности, не перекрывая друг друга. Олигомерная форма связующего в наполненном полуфабрикате обеспечивает достаточную текучесть на стадии формования. Вязкость олигоимида АПИ-2 при 250–290С составляет 10 6 Пас, идет при 340–360. Пластики на основе АПИ-2 характеризуются высоким уровнем физико-механических свойств в широком диапазоне температур эксплуатации.
Однако, переработка композиций на основе АПИ-2 литьевым и, даже прямым прессованием осложнена тем, что реакция отверждения по концевым циклическим звеньям при температурах плавления олигоимида не развивается, а резкое повышение вязкости олигоимида при температурах отверждения приводит к тому, что невозможно выделить стадию вязко-текучего состояния связующего, и следовательно оформить изделие. Поэтому, условия формования композиций на основе АПИ-2 не отвечают тем требованиям, которые предъявляются к композиционным материалам, формуемым в изделия прямым или литьевым прессованием. Для заполнения форм прямым прессованием материал должен иметь вязкость порядка 10 7 Пас, при этом длительность вязко-текучего состояния отверждающегося материала должна быть в пределах 1–3 мин. Отверждение должно заканчиваться за 2–4 минуты выдержки материала в форме и температура формы не менялась.
Поскольку, технологические параметры композиционных материалов на основе АПИ-2 не отвечают этим требованиям, то необходимо найти компоненты, присутствие которых в составе полиимидного композиционного материала, не ухудшая его тепло- и термостойкость, придало бы то сочетание технологических свойств, которое позволило бы использовать применительно к имидопластам традиционные схемы переработки реактопластов на существующей технологической оснастке и оборудовании.
Добиться снижения вязкости состава и тем самым улучшить технологические свойства КМ можно с помощью активного разбавителя, снижающего вязкость, но не ухудшающего качество изделий.
Имидное связующее АПИ в процессе изготовления КМ, а затем и изделий из них, переходит из смеси имидообразующих мономеров в аминосоль эфирокислоты, далее в олигоамидокислоту, олигоимид и на заключительной стадии в сетчатый полиимид. Первые три реакции заканчиваются в период изготовления КМ (т.е. совмещения с наполнителем и подготовки к формованию), последняя проходит в период формования изделий. Стадия изготовления КМ на основе связующего АПИ-2 является чрезвычайно длительной, т. к. ее приходится проводить по ступенчатому режиму. Это обусловлено тем, что одновременно с образованием олигоамидокислоты, а затем олигоимида при непрерывном повышении молекулярной массы и вязкости, необходимо максимально полно удалить растворитель, чтобы снизить пористость будущих изделий.
Поскольку с помощью активного компонента можно значительно улучшать технологические свойства традиционных связующих не снижая эксплуатационных свойств, мы используем этот принцип и по отношению к составу АПИ. Активный компонент должен в этом случае удовлетворять следующим требованиям:
-
совмещаться с имидообразующими мономерами, не вступая с ними в химическое взаимодействие; их смесь должна представлять собой низковязкую стабильную жидкость.
-
На стадии образования олигоимида выступать в роли разбавителя, снижая вязкость состава. Это должно привести к подавлению процесса межмолекулярного взаимодействия соседних олигомерных молекул, а, следовательно, к образованию более совершенной структуры олигоимида.
-
Полуфабрикат, содержащий активный компонент, в процессе хранения должен быть сухим, не липким, легко дозироваться.
-
На стадии формования активный компонент должен снижать вязкость расплава олигоимида, улучшая текучесть при формовании, при этом, желательно, чтобы он выполнял и функцию инициатора реакции отверждения АПИ, снижая температуру этого процесса.
-
На стадии имидизации и последующего отверждения олигоимида активный компонент не должен удаляться из системы.
-
Присутствие дополнительного компонента не должно снижать теплостойкости и эксплуатационных свойств на его основе.
Из перечисленных требований следует, что на начальной стадии активный компонент должен быть низкомолекулярной жидкостью, а на последующих стадиях должен приобрести достаточно большую молекулярную массу, во избежания испарения. Среди химических соединений, которые могли бы удовлетворить поставленным требованиям рекомендуется фуриловый спирт.
Фуриловый спирт может служить растворителем на стадии совмещения связующего с наполнителем. Химические превращения фурилового спирта в олигомер, затем в линейный полимер и, наконец, в сетчатый полимер, можно совместить со стадиями химических превращений состава АПИ.
Ведение полимера – разбавителя целесообразно осуществлять на начальной стадии синтеза полиимида АПИ. Для обеспечения совмещения компонентов на молекувярном уровне целесообразно применять разбавитель в виде мономера, из которого в дальнейшем образуется линейный полимер.
Для системы полиимид-фурановый полимер на начальной стадии необходимо использовать раствор имдообразующих мономеров: кислые эфиры ароматической тетракарбоновой и ненасыщенной циклоалифатической кислот и ароматического диамина в соотношении 1: 2: 2 в фуриловом спирте. Для синхронизации условий образования олигоимида и фуранового полимера в начальный состав необходимо вводить малеиновую кислоту в качестве катализатора реакции поликонденсации фурилового спирта. Фурановый полимер, выполняя функцию разбавителя олигоимида, снижает вязкость материала, облегчая заполнение форм, а, поскольку пиролитическое разрушение – связей фуранового цикла начинается при более низкой температуре, чем эндикового цикла, то фурановый полимер инициирует и ускоряет отверждение олигоимида, участвуя в образовании сетчатого полимера. Процесс отверждения олигоимида в присутствии фуранового полимера проходит в две стадии: разделение смеси полимеров, выделение в самостоятельную фазу фуранового полимера с одновременным разрывом двойных связей фуранового цикла, далее происходит реакция полимеризации олигоимида по границе раздела фаз, инициируемая радикалами, образовавшимся в фурановом полимере.
Состав АПИ, в котором в качестве растворителя использован фуриловый спирт носит название АПИ-3. Присутствие в составе связующего фуранового полимера увеличивает время вязко-текучего состояния при одновременном снижении температур отверждения олигоимида до 300С, сокращается и длительность отверждения. Эффективная энергия активации начала процесса отверждения снижается с 93,2 кДж/моль до 53,0 кДж/моль поскольку фурановый полимер принимает участие в реакции полимеризации олигоимида. При этом, на границе раздела фаз образуется, по видимому, сетчатый фурановый полимер.
Давление формования оказывает такое же влияние на поведение олигоимидов и КМ на их основе, как и в случае фенопластов.
Вязкость наполненных олигоимидов АПИ-2 и АПИ-3 при температурах плавления аналогична вязкости фенольных пресс-порошков (10 6-10 7 Па с). Присутствие наполнителя сокращает время вязко-текучего состояния по сравнению с ненаполненными олигоимидами. В случае КМ на основе АПИ-2 время вязко-текучего состояния при 320–340С сокращается до нуля. Это заставляет формовать изделия в две стадии: при 290С – проводить формообразование, а при 340С – отверждать их. КМ на основе АПИ-3 формуются в одну стадию при температуре отверждения изделия.
Рекомендуется прессовать КМ на основе АПИ-3 при 300С и давлении 10–20 МПа в зависимости от применяемого наполнителя. Время подачи давления и отверждения зависит от применяемого наполнителя. Углеродный наполнитель сокращает время вязко-текучего состояния в КМ на основе АПИ-3 с 9 мин. до 4 мин. при 300С, но не влияет на продолжительность реакции отверждения. В присутствии базальтового и стеклянного наполнителя время вязко-текучего состояния также сокращается при 300С по сравнению с ненаполненным АПИ-3, а при 270С, наоборот, увеличивается. Но замедляется стадия отверждения. Разрыхленность полуфабриката и малая теплопроводность наполнителя затрудняет его прогревание на начальной стадии отверждения, повышая на этой стадии эффективную энергию активации. Чем выше теплопроводность наполнителя и степень асимметрии его частиц, тем в большей степени энепгия активации начального периода отверждения приближается к значению энергии активации связующего. Длительный период вязко-текучего состояния всех КМ на основе АПИ-3 при 270С можно использовать для предварительной пластикации при литьевом прессовании. Время вязко-текучего состояния имидопластов при 300С (3–4 мин.) меньше чем при 270С, но достаточно для предварительного подогрева в поле ТВЧ, таблетированного материала, предназначенного для прямого прессования, что может сократить длительность пребывания материала в формующем оборудовании. Для повышения теплостойкости целесообразно проводить дополнительную термообработку изделий вне формующей оснастке при 350С.
Эксплуатационные свойства изделий на основе АПИ-3
Присутствие фуранового полимера в составе отвержденного полиимида не снижает температуру начала термодеструкции и не увеличивает потери массы в процессе деструкции полимера, даже при прогреве до 6000С. На основе АПИ-3 были созданы композиционные материалы с повышенным уровнем рабочих температур с различными наполнителями: рубленные углеродные, базальтовые, стеклянные волокна, порошкообразный термоантрацит.
Разработанные КМ на основе АПИ-3 не изменяют своих свойств в течение длительного времени (не менее 12 мес.).
При получении антифрикционного самосмазывающегося материала (АСП) с использованием связующего АПИ-3 была использована технологическая схема изготовления пресспорошков на основе порошкообразных наполнителей и раствора связующего, состав и количество наполнителя были оставлены такими же, как и в АСП АТМ-2: смесь порошкообразного термоантрацита и природного графита в соотношении 9:1, содержание наполнителя составляло 50–55% масс. Пресспорошок на основе АПИ-3 (марка ИГП) готовили путем смешения связующего АПИ-3 и наполнителя в смесителе лопастного типа до получения однородного состава с последующей его термообработкой для перевода связующего в олигоимидную форму. После термообработки (сушки) массу измельчали в шаровой мельнице до размеров гранул с dср=0, 15–0,25 мм.
Изучение технологических свойств разработанного на основе АПИ-3 ИГП показало, что он пригоден для переработки в изделия прямым прессованием.
Вязкость материалов и условия отверждения позволяют проводить процесс прессования также, как и фенопластов, в одну стадию, что не удавалось реализовать при использовании связующего АПИ-2. Материалы на основе АПИ-3 при температуре отверждения 3000С, которую можно считать за оптимальную, сохраняют вязко-текучее состояние в течение времени, достаточного для прогрева материала по всему объему изделия и созданию давления формования. При сравнении свойств имидопластов на основе АПИ-3 и АПИ-2 можно видеть, что использование фурилового спирта в качестве модифицирующего активного компонента в составе имидообразующих мономеров не снижает механические свойства стандартных образцов как при 200С, так и при повышенных температурах. Показатели прочности имидопластов на основе АПИ-2 и АПИ-3 аналогичны показателям свойств фенольного прессматериала ВПМУ-1 при 200С. В отличие от ВПМУ-1, имидопласты АПИ значительно более теплостойки: даже при 3500С они сохраняют 81–82% исходной прочности при изгибе, 62% – ударной вязкости. Показатели свойств ВПМУ-1 уже при 2000С снижаются на 50%.