123751 (592849), страница 6
Текст из файла (страница 6)
Электрохимический метод используют только в минерализованных водных средах, а также в прямых водонефтяных эмульсиях, в которых внешней фазой является вода. В последнем случае должна быть устранена возможность загрязнения датчиков нефтью.
Резистометрический метод может использоваться в любых средах, но в условиях преобладания локальной коррозии может давать существенные погрешности.
Гравиметрические УКК монтируют на всех точках контроля коррозии.
Электрохимические УКК монтируют рядом с гравиметрическими или самостоятельно на нефтепроводах с расслоенным режимом течения водонефтяной смеси и водоводах, на которых имеется необходимость оперативного мониторинга коррозии (например, особо ответственные трубопроводы; трубопроводы, где проходятся опытно промысловые испытания новых ингибиторов коррозии и реагентов комплексного действия).
Ввод образцов-свидетелей и электрохимических зондов УКК производится через лубрикаторные устройства с проходным сечением отсекающего крана или задвижки диаметра 50 или 100 мм. Зонды электрохимических коррозиметров могут быть размещены в трубопроводах непосредственно, путем врезки в трубопровод. Такие зонды обычно извлекают и в зависимости от скорости коррозии они, могут проработать несколько лет; их удобно устанавливать вне обслуживаемых площадок (в поле).
Лубрикаторные устройства устанавливают на прямых участках трубопроводов на расстоянии не менее 10 диаметров от поворотов и не менее 5 диаметров до поворотов.
Определение фоновой скорости коррозии и скорости коррозии с ингибиторами коррозии или реагентом комплексного действия производится на одном и том же УКК. При этом на период определения фоновой скорости коррозии подачу ингибитора коррозии или реагента комплексного действия прекращают.
УКК па трубопроводах, как правило, устанавливают :
- в конце каждого обрабатываемого ингибитором коррозии или реагентом комплексного действия нефтепровода на входе товарного парка или установки предварительного сброса воды;
- в конце защищаемого трубопровода перед врезкой в другой трубопровод в том случае, если, цель защиты трубопровода после врезки не ставится;
- в конце особо ответственного трубопровода перед врезкой в другой трубопровод;
- в промежуточных точках длинных трубопроводов, если удаление точки дозирования ингибитора коррозии превышает 10 км.;
- в конце защищаемого ингибитором коррозии или реагентом комплексного действия трубопровода, соединяемого на площадках ГЗНУ или ДНС с другим защищенным или незащищенным трубопроводом. Размещение УКК на месте дозирования ингибитора коррозии или реагента комплексного действия необязательно, так как это не дает однозначной информации о защищенности по всей длине трубопровода. На трубопроводах электроды электрохимической УКК размещают на минимальном расстоянии от нижней образующей. Размещение образцов-свидетелей в гравиметрических УКК производится с помощью стандартной кассеты, устанавливаемой вертикально в самой нижней части поперечного сечения трубопровода.
Чаще всего для оценки защитной эффективности ингибиторов используют гравиметрический метод определения скорости коррозии металлов, дополняя его тестированием образцов, на которые тем или иным способом нанесен исследуемый ингибитор. Степень защиты ингибитора вычисляют путем сопоставления экспериментальных данных, полученных на неингибированных и ингибированных образцах.
Гравиметрический метод определения скорости коррозии металлов можно применять в двух вариантах:
1 – определение скорости коррозии по увеличению массы образцов – свидетелей.
2 - определение скорости коррозии по потере массы образцов -свидетелей.
Скорость образцов в первом варианте вычисляют по формуле :
Vум = (12)
где Vум = скорость коррозии образца, определения по увеличению его массы, г/м2 ч;
m0 = 16,3025 г – масса необходимого образца;
m1 = 16,3206 г – масса образца с продуктами коррозии;
S = 0,00265 м2 – площадь поверхности образца;
t = 7 дней=168 часов – продолжительность испытаний;
n = 1,1 – коэффициент, зависящий от состава продуктов коррозии.
а) Vум =
-без ингибитора коррозии
б) m1 = 16,3061 г – масса образца с продуктами коррозии;
Vум =
- с ингибитором коррозии.
Формула (12) применима только в тех случаях, когда известен химический состав продуктов коррозии, который может быть установлен специальными методами. Это является существенным недостатком первого варианта гравиметрического метода, так как он может быть использован в основном для исследования газовой коррозии, при которой на поверхности металла образуется негидратированная опись, что обусловлено невозможностью образования слоя влаги при высокой температуре. Преимуществом первого варианта является возможность наблюдения за кинетикой процесса на одних и тех же образцах, поскольку прослеживается увеличение их массы.
В случае реализации второго варианта продукты коррозии удаляют различными составами, взаимодействующими не с основным металлом, а с продуктами коррозии. Для того, чтобы убедиться в отсутствии химического взаимодействия между металлом и очищающим составом или получить данные о растворимости в последнем основного металла, ставят так называемую «слепую» пробу, то есть обрабатывают неэкспонированные в коррозионной среде образцы.
Скорость коррозии во втором варианте вычисляют по формуле:
Vпм = (13)
где Vпм = скорость коррозии образца, определенная по потере его массы, г/м2 ч;
m2 = 16,2891 г – масса образца после удаления продуктов коррозии.
а) Vпм =
- без ингибитора коррозии
б) m2 = 16,2998 г – масса образца после удаления продуктов коррозии;
Vпм =
- с ингибитором коррозии.
По потере массы образцов можно оценивать коррозионную стойкость в баллах, предполагая, что металл разрушается равномерно.
Среднее значение скорости коррозии по глубине растворения металла Vгр вычисляют, используя данные о Vпм:
Vгр = (14)
где 8,76 – переводной коэффициент, зависящий от природы металла;
V=
- удельная масса образца.
а) Vгр =
- без ингибитора коррозии
б) Vгр =
- с ингибитором коррозии
Второй вариант гравиметрического метода определения скорости коррозии металла имеет ряд недостатков: практически весьма сложно удалить все продукты коррозии с поверхности, не воздействуя на основной металл; невозможно определить скорость коррозионных процессов, протекающих неравномерно.
2.6 Анализ порывности трубопроводов в системе ППД
Протяженность водоводов в системе ППД в НГДУ «Лениногорскнефть» по данным на июль 2004 года составляет 1248 км. Ингибиторная защита направлена на повышение надежности и увеличения срока службы трубопроводов, повышение экологической безопасности объектов, а также на снижение количества порывов, приводящих к увеличению расходов по обслуживанию трубопроводов (ликвидация порывов)
Как видно из графика в 1996 году было обработано 10,5 млн. м3 жидкости. Количество ингибиторов составило 697 тонн. В 1997-1998 гг. количество подаваемых ингибиторов снизилось до 505-551 т. соответственно. Снижение объемов закачки связано с уменьшением количества порывов. Так если в 1996 годы произошло 264 порыва водоводов, то в 1999 году количество порывов снизилось до 96, что на 64% меньше.
В 2000-2002 гг. идет резкое возрастание количества закаченного ингибитора, но из графика видно, что повышение количества закаченного ингибитора существенно не влияет на количество порывов (что связано с не вовремя проведенными стендовыми испытаниями, по выявлению наиболее технологически эффективного и экономически выгодного ингибитора коррозии). Поэтому после 2002 года идет снижение количества закачиваемого ингибитора.
Для определения наиболее выгодного ингибитора коррозии необходимо проводить стендовые испытания, которые были проведены отделом техники и технологии защиты от коррозии института "Тат-НИПИнефть". Работы проведены с использованием стендовой установки. Для каждого объекта, с которого сточная вода подается в систему ППД, определен свой, наиболее эффективный ингибитор коррозии.
Таблица 5. Результаты стендовых испытаний ингибиторов коррозии очистных сооружений Лениногорского товарного парка НГДУ «Лениногорскнефть».
Марка ингибитора | Дозировка г/м3 | Скорость коррозии, мм/год | Защитный эффект, % | ||
без ИК | с ИК | ||||
Напор-1007 | 30 | 0,150 | 0,134 | 10 | |
СНПХ-6302Б | 50 | 0,150 | 0,062 | 58 | |
СНПХ-6301 КЗ | 50 | 0,093 | 0,016 | 83 | |
СНПХ-6030Б | 50 | 0,093 | 0,070 | 25 | |
Амфикор | 50 | 0,083 | 0,052 | 37 |
Из представленных в таблице результатов видно, что наиболее высокую эффективность показал ингибитор коррозии СНПХ-6301КЗ (83 %). На очистных сооружениях Лениногорского товарного парка рекомендуется подавать ингибитор коррозии СНПХ-6301КЗ. Корректировку норм подачи ингибитора необходимо проводить по результатам измерения скоростей коррозии на узлах коррозионного контроля.
Как следует из представленных выше результатов стендовых испытаний на объектах системы ППД "НГДУ "Лениногорскнефть" высокий защитный эффект показали ингибиторы коррозии Напор-1007 и СНПХ-6301КЗ. Данные ингибиторы обладают высоким эффектом последействия и, соответственно, при подаче их по технологии периодического дозирования, согласно РД 153-39.0-250-02 "Инструкция по защите футерованных полиэтиленом водоводов путем периодической подачи ингибиторов коррозии", можно добиться значительного снижения расхода, по сравнению с непрерывной подачей.
2.7 Новые технологии ингибиторной защиты
В последнее время в ОАО "Татнефть" введен режим экономии материальных затрат. Немалых средств требует применение ингибиторов коррозии. В связи с этим актуальным становится широкое внедрение новых технологий ингибиторной защиты трубопроводов систем нефтесбора и ППД, разработанных в институте ТатНИПИнефть, которые позволяют экономить расход ингибиторов коррозии.
Одной из таких технологий является ингибиторная защита футерованных полиэтиленом водоводов сточных вод методом периодического дозирования. Вопрос необходимости разработки такой технологии появился еще в начале 90-х гг. в связи с массовым внедрением МПТ. Количество порывов водоводов системы ППД в результате этого резко уменьшилось, а объемы применения ингибиторов коррозии оставались практически на одном уровне. В отдельных НГДУ пытались уменьшить дозировки ингибиторов, но это привело лишь к снижению их защитной эффективности. Известно, что независимо от площади защищаемой поверхности, объемная концентрация ингибитора коррозии в агрессивной фазе должна быть не ниже защитной.
По данным исследований института и лабораторий коррозии НГДУ значительная часть ингибиторов коррозии в реальных условиях водоводов адсорбируется на твердых взвешенных частицах. Такие потери приводят к необходимости повышения дозировок ингибиторов выше защитной концентрации. Существовали определенные надежды на то, что поверхность полиэтилена может служить своеобразным аккумулятором, отдающим ингибитор после остановки его подачи. Однако эксперименты показали, что полиэтилен обладает низкой аккумулирующей способностью.