123402 (592815), страница 8

Файл №592815 123402 (Нанесение и получение металлических покрытий химическим способом) 8 страница123402 (592815) страница 82016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

В зависимости от природы используемого восстановителя рекомендуемая температура раствора может изменяться от комнатной температуры до температуры кипения. Источником иона кобальта являются сернокислая или хлористая соль кобальта в концентрации 0.01 — 1.0 моль/л.

Для получения высококачественных Со—В-покрытий на стали из ванн, характеризующихся высокой стабильностью, рекомендуется использовать раствор следующего состава (г/л): сернокислого кобальта (кристаллогидрат 36.5, диметилборазана 7.5, уксусной кислоты до рН 6.0—7 0, гептаглюконата калия 17.4 (температура 49—57 °С). Способ корректирования раствора при непрерывном ведении процесса нанесения Со—В покрытия аналогичен корректированию раствора Ni — В покрытия.

Структура и свойства Со—В покрытий. Исследования ИФХ АН СССР показывают, что полученные Со—В покрытия представляют собой сочетания кристаллической и аморфной фаз. Кристаллическая структура представляет собой твердый раствор внедрения бора и водорода в гексагональном α-Со. В процессе нагрева в Со—В-покрытиях протекают необратимые структурно-фазовые превращения с выделением фазы борида Со3В а области температуры 215°С и фазы Со3В в области температур 425—460 оС. Свойства химически восстановленных Со—В-сплавов сильно отличаются как от гальванического кобальта, так и от сплавов Со—Р. Это относится к таким свойствам, как твердость, износостойкость и магнитные характеристики.

Твердость Со—В-покрытий до термообработки составляет 4000—7400 МПа, после отжига в области температур 300 и 500°С твердость увеличивается до 13 000 МПа. Химически восстановленные Со—В сплавы после термообработки рекомендуется использовать в качестве износостойких покрытий.

Включение бора в решетку кобальта вызывает резкое уменьшение величин максимальной и остаточной магнитной индукции кобальта. Наблюдается также изменение магнитных свойств Со—В-покрытия в результате нагревания, поскольку фазы Со3В и Со2В характеризуются низкими значениями ферромагнитных характеристик, после отжига наблюдается значительное возрастание коэрцитивной силы Со—В-покрытий от 640 до 1280 А/м.

2.4 Осаждение никель-фосфорных и кобальт-фосфорных покрытий, легированных другими металлами

2.4.1.Ni—Со—Р-покрытия

Для решения ряда технологических задач необходимо расширить диапазон эксплуатационных свойств Ni—Р и Со — Р-покрытий, легируя их другими металлами.

Наибольший интерес из тройных сплавов представляет система N1 — Со — Р которая получила широкое применение в электронной радиотехнической промышленности [43]. Получение осадков, включающих одновременно никель и кобальт, возможно в щелочных аммиачных растворах, содержащих растворимые соли как того, так и другого металла.

Приведем один из составов растворов, в котором можно осаждать Ni—С—Р-покрытие (г/л):

Хлористый никель (кристаллогидрат) 25

Хлористый кобальт (кристаллогидрат) 25

Гипофосфит натрия 24

Хлористый аммоний 30

Лимоннокислый натрий 45

Аммиак (25 %-ный), мл/л 50—60

рН 8,3—8,5

Осаждение производится при температуре 90—92°С. Скорость осаждения Ni — Со — Р-покрытия соизмерима со скоростью осаждения Ni—Р-покрытия. Скорость образования сплава возрастает экспоненциально с увеличением температуры; содержание кобальта при этом увеличивается. Заметное влияние на состав Ni-—Со—Р-покрытия оказывает изменение концентрации аммиака в растворе; с ростом концентрации аммиака происходит обогащение сплава кобальтом.

В литературе [16] отмечается, что применение сульфатов никеля и кобальта предпочтительнее, чем хлоридов, поскольку скорость образования покрытия в первом случае выше, а сами осадки получаются более блестящими.

На рис. 10 приведена зависимость скорости осаждения и состава сплава от содержания гипофосфита.

Рис. 10. Зависимость скорости осаждения Ni—Со—Р-покрытия от концентрации гипофосфита натрия в растворе.

Применение борной кислоты в отличие от хлористого аммония позволяет получать Ni—Со—Р-покрытия с достаточной скоростью (10—15 мкм/ч) и с высоким содержанием (массовая доля %) 60—80 кобальта. Скорость образования Ni—Со—Р-покрытия линейно возрастает с увеличением концентрации сернокислого аммония (до 40 г/л). Составы растворов, применявшиеся для этой цели, представлены в табл. 7.

Таблица 7.

Составы растворов для получения Ni—Со—Р-покрытий в виде тонких пленок

Номер раствора

Температура, оС

Сульфат кобальта (кристаллогидрат

сульфат никеля (кристллогидрат)

Хлорикобальта (кристаллогидрат)

Хлорид никеля (кристаллогидрат)

Гипофосфит натрия

Лимоннокислый натрий

Хлорид аммония

Аммиак

1

0,05

0,05

0,2

0,2

0,5

2

0,004

0,004

0,1-0,2

0,2

0,2

Скорость образования покрытий значительно увеличивается с увеличением концентраций гипофосфита, однако в этих условиях возможно восстановление сплава в объеме раствора. Саморазложение раствора предотвращается насыщением его кислородом или введением тиомочевины.

Непосредственно после осаждения Ni—Со—Р-покрытия имеют малую твердость и слабое сцепление с основным металлом. Но их твердость и адгезия повышаются после часового нагрева. При 350—400 °С — для стальных и медных деталей и при 200 — 220 °С — для алюминиевых В исходном состоянии твердость покрытий не зависит от химического состава осадка и составляет 5000—5500 МПа. С повышением температуры отжига твердость этих сплавов растет, достигая максимального значения 5500 МПа после отжига при 300—350 °С. При дальнейшем отжиге твердость покрытий уменьшается.

Раствор корректируется теми же методами, что и для Ni — Р-покрытий. Ni — Со — Р-покрытия можно осаждать на детали из железных, медных и алюминиевых сплавов, а также из неметаллов. Покрытия блестящие, светлые с серебристым оттенком, типичная для никелевых осадков желтизна отсутствует

Магнитные свойства. Радиоэлектронная промышленность и некоторые отрасли приборостроения нуждаются в покрытии с самыми разнообразными магнитными свойствами. Эти требования в ряде случаев могут быть удовлетворены путем использования Ni—Со—Р-покрытий, которые в зависимости от условий их получения, состава и структуры способны проявлять свойства как магнитомягких, так и магнитотвердых материалов. Первые находят применение для элементов оперативной памяти электронно-счетных устройств, а вторые используются для записи звука. Для элементов оперативной памяти ЭВМ используют Ni—Со—Р-покрытия в тонких слоях.

Большое влияние на магнитные свойства Ni—Со—Р-пленок оказывают природа и характер подготовки поверхности, на которую наносятся покрытия


2.4.2.Покрытия Ni—Сu—Р, NiFe—Р, NiRe—Р, Ni—Со—Re—Р, NiW—Р, Со—W—Р и Ni—Со—W—Р

Ni—Сu—Р-покрытие можно получить из раствора содержащего (г/л): хлористый никель 20, гипофосфит натрия 20, лимоннокислый натрий 50; хлористый аммоний 40; сернокислая медь 1,6; рН 8,8—9,0; t=80°С. Введение в раствор сернокислой меди увеличивает Нс до 960 А/м (вместо 560 А/м в осадке, полученном из раствора без сернокислой меди) и снижает магнитную индукцию. При дальнейшем увеличении концентрации меди содержание фосфора в покрытиях превышало 12 % и они были немагнитны [43].

NiFe—Р-покрытия. Эти покрытия являются магнитомягкими и применяются в виде двухслойных пленок. Первый слой толщиной до 0,1 мкм содержит до 70% никеля и 30 % железа и получается из раствора, содержащего (г/л): хлористый никель 30; хлористое железо 20; сегнетова соль 50; гипофосфит натрия 25.

NiRe—Р- и Ni—Со—Re—Р-покрытия. Эти покрытия можно получить из кислых растворов (рН=5) при температуре 90-92оС. Один из рекомендуемых растворов содержит (г/л): хлористый никель 21, перренат калия 3,0, уксуснокислый натрий 10, гипофосфит натрия 24. Из этого раствора за 30 мин можно осадить покрытие толщиной 10 мкм. Покрытия получаются блестящие гладкие, равномерные, с серебристым отливом. Прочность сцепления с основой может быть увеличена с помощью термообработки при температуре 350°С Одновременно увеличивается микротвердость покрытий. Так, без термообработки микротвердость составляет 4760 МПа, а после часовой термообработки при 350°С микротвердость составляет 6440МПа, максимум микротвердости соответствует термообработке при 500 оС и равняется 8660 МПа. Износостойкость этих покрытий несколько ниже, чем Ni—Р-покрытий. Введение рения в такое покрытие существенно повышает коррозионную стойкость этого покрытия. Добавление в растворы для получения Ni—Со—Р-покрытий перрената калия позволяет получать Ni—Со—Re—Р-покрытия. Коррозионная стойкость такого покрытия выше, чем у Ni—Со—Р-покрытий.

Значительный интерес представляет покрытие Со—W—Р. С увеличением концентрации вольфрамовокислого натрия скорость образования покрытия немного снижается. При этом содержание вольфрама в сплаве увеличивается от 6.4 до 8 3 (массовые доли %), в то время как фосфор уменьшается от 2.6 до 1,6 (массовые доли. %) (концентрация хлористого кобальта в этом случае составляла 36 г/л) Покрытия в этих условиях получались блестящими.

Исследования показывают, что при получении Со—W—Р-сплавов можно вести процесс в течение 5—6ч с относительно постоянной скоростью.

Покрытия NiW—Р, Со—W—Р и Ni—СoW—Р. Структура и свойства. В результате рентгеноструктурных исследований было установлено, что покрытия Со—W—Р в исходном состоянии представляют собой твердый раствор замещения W и Р в решетке гексагонального α-Со. При нагреве до 100°С никаких изменений в структуре и свойствах покрытий не происходит. В области температур 250—450 °С протекает процесс распада α-твердого раствора при одновременном образовании фазы Со2Р. В области температур 450—600 °С происходит переход гексагонального α-Со в кубический гранецентрированный β-Со и распад β -твердого раствора с выделением фазы Cо3W. При нагреве покрытий выше 600 °С идут процессы коагуляции и рекристаллизации частиц образовавшихся фаз.

Микрофотографии шлифов поперечного среза покрытий дают четкую столбчатую структуру с характерной слоистостью. В соответствии со структурно-фазовыми превращениями находятся и изменения свойств покрытий. Это наглядно видно на кривых зависимости твердости от температуры отжига. Повышение твердости покрытий после отжига в области температур 200—400 °С и 500—600 °С связано с выделением фазы Со2Р и Co3W соответственно.


2.4.3 Покрытия Со—Zn—Р, Со—Fe—Р, Со—Re—Р, Со—Сu—Р, Со—Мо—Р, Со—Мn—Р

Со—Zn—Р-покрытие. С точки зрения магнитных характеристик значительный интерес представляют пленки сплава Со—Zn—Р. Эти пленки наносились как на лавсановую основу, так и на образцы из латуни. Поверхность лавсановой пленки активировалась путем последовательной обработки в растворах хлористого олова и хлористого палладия. Латунь обрабатывалась только в растворе хлористого палладия. Нанесение покрытия осуществлялось в растворе следующего состава (г/л): хлористый кобальт 7.5, гипофосфит натрия 3 5, лимонная кислота 20. хлористый аммоний 12,5; хлористый цинк 0.1: рН 8.2, температура 80 °С.

Содержание цинка в покрытиях увеличивается линейно с повышением концентрации хлористого цинка в растворе, находясь в пределах 0—4 (массовые доли. %), при этом содержание фосфора остается постоянным (~4 массовые доли. %). Полученные покрытия были блестящими и обнаруживали хорошую адгезию с металлом основы .Микроструктура поперечного среза Со—Zn—Р покрытия обнаруживает слоистость. Твердость покрытий составляет 3500— 4000 МП а.

Наибольшее внимание уделялось изучению магнитных свойств Со—Zn—Р пленок.

Коэрцитивная сила химически восстановленных Со—Zn—Р-пленок, полученных на лавсане, зависит от их толщины; она увеличивается до максимума 77-103 — 88-103 А/м. При толщине 0,02 мкм и далее с ростом толщины пленки уменьшается; она мало изменяется с увеличением концентрации цинка в пленке. Прямоугольность петли гистерезиса уменьшается от 0,7 до 0,5 при снижении толщины пленки от 0,05 до 0,0150 мкм, при толщине пленки более 0,06мкмпрямоугольность петли гистерезиса остается приблизительно постоянной. При низких содержаниях цинка в Со—Zn—Р-пленках их коэрцитивная сила меньше при нанесении на латунь, чем на лавсан. Пленки, полученные при концентрации хлористого цинка 1 г/л, независимо от природы основы характеризуются одинаковой величиной коэрцитивной силы.

Со—Fe—Р-покрытие. Для осаждения Со—Fе—Р-сплава можно использовать раствор следующего состава (г/л): сернокислое железо (закисное) 30, сернокислый кобальт 10: гипофосфит натрия 10, сегнетова соль 50, рН—10, температура 90 °С.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6547
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее