123225 (592785), страница 3
Текст из файла (страница 3)
Нормальный модуль зацепления находим по формуле [3, с.30]:
mn = (0,01 ÷ 0,02) · аω,(47)
mn = (0,01 ÷ 0,02) · 160 = 1,6 ÷ 3,2 мм;
принимаем по ГОСТ 9563 – 60 mn = 3 мм [2].
Принимаем предварительно угол наклона зубьев β = 10º и определим числа шестерни и колеса по формуле [3, с.31]:
,(48)
14;
z2 = z1 · u,(49)
z2 = 14 · 6,3 = 88.
Уточненное значение угла наклона зубьев [3, с.31]:
,(50)
;
принимаем β = 17º01'.
Основные размеры шестерни и колеса:
Диаметры делительные по формуле [3, с.38]:
,(51)
43,922 мм,
276,078 мм.
Проверка:
мм.
Диаметры вершин зубьев:
da = d + 2 · mn,(52)
da1 = 43,922 + 2 · 3 = 49,922 мм,
da2 = 276,078 + 2 · 3 = 282,078 мм.
Ширина колеса:
b2 = ψba · aω,(53)
b2 = 0,4 · 160 = 64 мм.
Ширина шестерни:
b1 = b2 + 5,(54)
b1 = 64 + 5 = 69 мм.
Определяем коэффициент ширины шестерни по диаметру:
,(55)
.
Окружная скорость колес и степень точности передачи:
,(56)
1,65 м/с.
При такой скорости для косозубых колес принимаем 8 степень точности [3, с.27].
Коэффициент нагрузки:КН = КНβ · КНα · КНv,(57)
где КНα – коэффициент, учитывающий распределение нагрузки между зубьями; при v = 1,65 м/с и 8 степени точности КНα = 1,075;
КНβ – коэффициент, учитывающий распределение нагрузки по длине зуба; при ψbd = 1,08, твердости НВ≤350 и несимметричном расположении колес относительно опор с учетом изгиба ведомого вала передачи КНβ = 1,125;
КНv – коэффициент, учитывающий динамическую нагрузку в зацеплении; для косозубых колес при v ≤ 5 м/с КНv = 1.
Таким образом:
КН = 1,125 · 1,075 · 1 = 1,21.
Проверка контактных напряжений по формуле [3, с.34]:
,(58)
333 МПа.
Условие σН < [σH] выполнено.
Силы, действующие в зацеплении [3, с.217]:
окружная ,(59)
9108 Н;
радиальная ,(60)
где α – угол профиля зуба, α = 20º;
3095 Н;
осевая
Fa = Ft · tgβ,(61)
Fa = 9108 · tg 17º01' = 2786 Н.
Проверяем зубья на выносливость по напряжениям изгиба по формуле [3, с.38]: ≤ [σF],(62)
здесь коэффициент нагрузки КF равен [3, с.38]:
КF = КFβ · КFv(63)
При ψbd = 1,08, твердости НВ ≤ 350 и несимметричном расположении зубчатых колес относительно опор КFβ = 1,26, КFv = 1,1.
Таким образом, коэффициент нагрузки:
КF = 1,26 · 1,1 = 1,39
YF – коэффициент, учитывающий форму зуба и зависящий от эквивалентного числа зубьев zv [3, с.38]: ;(64)
у шестерни
≈ 16,
у колеса
≈ 92,
таким образом YF1 = 3,80 и YF2 = 3,60.
Допускаемое напряжение определяем по формуле [3, с.39]:
,(65)
где - предел выносливости (при отнулевом цикле), соответствующий базовому числу циклов; для стали 45 улучшенной при твердости НВ ≤ 350
= 1,8 НВ [2];
[SF] – коэффициент безопасности;
[SF] = [SF]' · [SF]";(66)
для поковок и штамповок [SF]" = 1, [SF]' = 1,75;
[SF] = 1,75 · 1 = 1,75;
для шестерни: = 1,8 · 230 = 415 МПа,
= 1,8 · 200 = 360 МПа.
Допускаемые напряжения:
для шестерни
237 МПа,
для колеса
МПа.
Находим отношение :
для шестерни МПа,
для колеса МПа.
Дальнейший расчет следует вести для зубьев колеса, для которого найденное отношение меньше.
Определяем коэффициенты Yβ и КFα [3, с.35]:
,(67)
,
;(68)
где n – степень точности зубчатых колес, n = 8;
εα – коэффициент торцового перекрытия, εα = 1,5;
0,92.
Проверяем прочность зубьев колеса:
≈ 198 МПа.
Условие σF2 = 198 МПа < [σF2] = 206 МПа выполнено.
2.7.3 Предварительный расчет валов редуктора
Предварительный расчет проведем на кручение по пониженным допускаемым напряжениям.
Ведущий вал:
диаметр выходного конца вала при допускаемом напряжении определяем по формуле [3, с.94]:
,(69)
≈ 29,4 мм;
принимаем dв1 = 30 мм;
принимаем под подшипники dп1 = 35 мм.
Шестерню выполним за одно целое с валом.
Рисунок 5 – Конструкция ведущего вала.
Ведомый вал:
диаметр выходного конца вала при допускаемом напряжении [τk] = 25 МПа:
≈ 63,6 мм.
Принимаем ближайшее значение из стандартного ряда : dв2 = 65 мм ; диаметр вала под подшипниками dп2 = 70 мм; под зубчатым колесом dк2 = 75 мм.
Рисунок 6 – Конструкция ведомого вала.
Диаметры остальных участков валов назначают исходя из конструктивных соображений при компоновке редуктора.
2.7.4 Конструктивные размеры шестерни и колеса
Шестерню выполняют за одно целое с валом, ее размеры определены выше: d1 =43,922 мм; dа1 =49,922 мм; b1 = 69 мм.
Колесо кованое: d2 = 276,078 мм; dа2 = 282,078 мм; b2 = 64 мм.
Диаметр ступицы dст = 1,6 · dк2 = 1,6 · 75 = 120 мм;
Длина ступицы lст = (1,5 ÷ 1,6) · dк2 = 112,5 ÷ 120 мм, принимаем lст = 115 мм.
Толщина обода δ0 = (2,5 ÷ 4) · mn = 7,5 ÷ 12 мм, принимаем δ0 = 8 мм.
Толщина диска С = 0,3 · b2 = 19,2 мм, принимаем С = 20 мм.
2.8 Проверочный расчет
2.8.1 Проверка долговечности подшипника ведущего вала
Из предварительных расчетов имеем:
Ft = 9108 Н; Fr = 3095 Н; Fа = 2786 Н; l1 = 76,5 мм; d1 = 43,922 мм.
Рисунок 7 – Расчетная схема ведущего вала.
Реакции опор:
в плоскости xz
, (70)
4554 Н;
в плоскости yz
,(71)
1947 Н;
,(72)
1148 Н.
Проверка:
Ry1 + Ry2 – Fr = 1947 + 1148 – 3095 = 0.
Суммарные реакции:
=
4953 Н,
4696 Н.
Построение эпюр моментов в плоскости 0x:
Mx1 = 0,
Mx Ал = - Ry1 · l1 = - 1947 · 76,5 = - 148,95 Н·м,
Mx Ап = - Ry2 · l1 = -1148 · 76,5 = - 87,82 Н·м,
Mx2 = 0;
в плоскости 0y:Мy1 = 0,
Мy А = Rx1 · l1 = 4554 · 76,5 = 348,38 Н·м,
Мy 2 = 0;
в плоскости 0z:
Мz = M1 = 200 Н·м.
Подбираем подшипники по более нагруженной опоре 1. Намечаем радиальные шариковые подшипники 207 [3, с.335]: d = 35 мм; D = 72 мм; В = 17 мм; С = 25,5 кН; С0 = 13,7 кН.
Эквивалентная нагрузка определяется по формуле [3, с.117]:
Рэ = (X · V · PP1 + Y · Fa) · Kδ · KT,(73)
где PP1 – суммарная реакция, PP1 = 4953 Н;
Fa – осевая сила, Fa = 9108 Н;
V – коэффициент, зависящий от вращения подшипника; т.к. вращается внутреннее кольцо подшипника, то V = 1;
Kδ – коэффициент безопасности для приводов ленточных конвейеров, он равен Kδ = 1;
KT – температурный коэффициент, KT = 1 [3, с.117].
Отношение
, этой величине соответствует е ≈ 0,44 [3, с.117].
Отношение > е; тогда X = 0,56 и Y = 1,86.
Рэ = (0,56 · 1 · 4953 + 1,86 · 3095) · 1 · 1 = 8530 Н.
Расчетная долговечность в млн.об.:
,(74)
≈ 26 млн.об.
Расчетная долговечность, ч:
,(75)
где n – частота вращения двигателя, n = 731,25 об/мин;
≈ 593 · 103 ч,
что больше установленных ГОСТ 16162 – 85.
2.8.2 Проверка долговечности подшипника ведомого вала
Ведомый вал несет такие же нагрузки, как и ведущий:
Ft = 9108 Н; Fr = 3095 Н; Fa = 2786 Н; l2 = 78,5 мм; d2 = 276,078 мм.
Рисунок 8 – Расчетная схема ведомого вала.
Реакции опор:
в плоскости xz
4554 Н;
в плоскости yz
.
- 902 Н;
,
3997 Н.
Проверка:
Ry4 – Ry3 – Fr = 3997 – 902 – 3095 = 0.
Суммарные реакции:
=
4642 Н,
=
6059 Н.
Построение эпюр моментов:
в плоскости 0x
Mx3 = 0,
Mx Бл = Ry3 · l2 = 902 · 78,5 = 70,81 Н·м,
Mx Бп = Ry4 · l2 = 3997 · 78,5 = 313,76 Н·м.
Mx4 = 0;
в плоскости 0y:
My3 = 0,
My Б = -Ry4 · l2 = -4554 · 78,5 = -357,49 Н·м,
My4 = 0;
в плоскости 0z
Mz = M2 = 1260 Н·м.
Выбираем подшипник по более нагруженной опоре 4 – шариковый однорядный подшипник 214 [3, с.335]:
d = 70 мм; D = 125 мм; В = 24 мм; С = 61,8 кН; С0 = 37,5 кН.
Отношение , этой величине соответствует е ≈ 0,27 [3, с.117].
Отношение > е; тогда X = 0,56; Y = 2,10.
Эквивалентная нагрузка по формуле (74):
Рэ = (0,56 · 1 · 6059 + 2,10 · 2786) · 1 · 1 = 9244 Н.
Расчетная долговечность в млн.об. (75):
≈ 299 млн. об.
Расчетная долговечность в часах (76):
L = ≈ 43 · 103 ч,
что больше установленных ГОСТ 16162 – 85.
2.8.3 Проверка прочности шпоночных соединений
Шпонки призматические со скругленными торцами. Размеры сечений шпонок и пазов и длины шпонок – по ГОСТ 23360 – 78 [3, с.103]. Материал шпонок – сталь 45 нормализованная. Напряжения смятия и условия прочности по формуле [3, с.106]:
≤ [σсм],(76)
где М – вращающий момент, Н;
d – диаметр вала, мм;
b – ширина шпонки, мм;
h – высота шпонки, мм;
t1 – глубина паза шпоночной канавки, мм;
l – длина шпонки, мм;
Допускаемые напряжения смятия при стальной ступице [σсм] = 100 ÷ 120 МПа, при чугунной ступице [σсм] = 50 ÷ 70 МПа.
Ведущий вал:
d = 30 мм; b= 8 мм; h = 7 мм; t1 = 4 мм; l = 60 мм; М1 = 73 · 103 Н·мм.
[σсм] = = 85 МПа < [σсм],
материал полумуфт МУВП – чугун СЧ20.
Ведомый вал:
d = 65 мм; b= 20 мм; h = 12 мм; t1 = 7,5 мм; l = 100 мм; М2 = 1260 · 103 Н·мм.
[σсм] = = 97 МПа < [σсм],
материал полумуфт МУВП – чугун СЧ20.