122661 (592705), страница 3
Текст из файла (страница 3)
Наружные стены из сплошного кирпича имеют надлежащие термические сопротивления при сравнительно большой толщине: 2 – 2,5 кирпича или 52 – 64см. Стены получаются тяжелыми – масса 1м2 стены составляет 800 – 1100кг. Такие стены нередко обладают излишней прочностью.
Производство пустотелых стеновых изделий требует меньше затрат на сырье и топливо, а поскольку ускоряется сушка и обжиг тонкостенных изделий, то соответственно повышается производительность сушилок и печей. Применение пустотелых керамических изделий позволяет уменьшить толщину наружных стен и снизить материалоемкость ограждающих конструкций на 20 – 30 %, сократить транспортные расходы и нагрузки на основание.
Пустотелый кирпич и керамические камни изготавливают из легкоплавких глин и глино – трепельных смесей с выгорающими добавками и без них. Пустоты в кирпиче или камне располагают перпендикулярно или параллельно постели, они могут быть круглыми и прямоугольными.
Размеры камней больше чем кирпича, поэтому их применение повышает производительность труда при кладке стен, а также приводит к уменьшению количества швов. Несмотря на большую пустотность керамических камней их марки такие же, как и марки сплошного кирпича, поэтому керамические камни применяют как для каркасных, так и для несущих стен.
После введения новых требований по теплозащите зданий4 появился ряд публикаций, ставящих под сомнение возможность дальнейшего применения кирпича в строительстве. Так, например, автор5 пишет: "Сооружение стен из кирпича становится бесперспективным, так как при их плотности от 1000 до 1700 кг/м3 толщина наружных стен должна быть доведена до 0,8-1,5 м". В решениях Министерства строительства РФ делаются такие выводы: "При повышенных требованиях к теплозащите ... использование традиционных стеновых материалов, таких как кирпич,... становится экономически нецелесообразным."6 .
Ситуация с критикой кирпича напоминает картину 60-х годов, когда в ходе индустриализации строительства все силы были брошены на освоение железобетонных изделий, а производство кирпича пришло в упадок.
В результате в настоящее время мы имеем огромное количество простаивающих производственных площадей заводов ЖБИ, ЖБК, ДСК и дефицит качественного кирпича, связанный с тем, что реконструкция кирпичного производства велась слишком медленными темпами.
Авторам, рассчитывающим толщину стен из кирпича по его теплопроводности, хотелось бы посовето вать посчитать толщину стены из пенополистирольной плиты, исходя из ее несущей способности. Толщина такой стены получилась бы не менее 3 м.
Наряду с этим, большинство специалистов понимает, что в современных условиях следует возводить комбинированные стены, 2-5-слойные, с использованием кирпича в качестве проверенного временем облицовочного и конструкционного материала7. "Полнотелые керамические
стеновые изделия могут быть экономически обоснованно использованы лишь в качестве облицовочных в сочетании с теплоэффективными изделиями"8.
Изучая зарубежный опыт, мы видим, что страны с холодным климатом применяют 3- и даже 5-слойные стеновые конструкции (Канада), а в более теплых странах, например в Австрии, техническое развитие кирпичного производства направлено в основном на улучшение теплоизоляционных свойств кирпича, так как его можно использовать как теплоизоляционный материал только при низких требованиях к теплопередаче стены.
Практически все наружные стены в Литве в настоящее время выполняют 3-слойными, а теплопроводность кирпича при этом не оказывает существенного влияния на сопротивление стен теплопередаче9.
Учитывая вышеизложенное, считаем необоснованной критику ГОСТ 530-95 и предложения ввести в качестве основного показателя коэффициент теплопроводности10. Так называемый эффективный или пустотелый кирпич при использовании в слоистых конструкциях практически ничего не дает для повышения сопротивления теплопередаче стены, а использование пустотелого кирпича в качестве лицевого должно быть исключено вовсе, так как приводит к снижению , капитальности стены.
Механические повреждения облицовочного слоя, выполненного из высокопустотного кирпича, приводят к образованию более глубоких выбоин, заметно снижающих общий эстетический вид поверхности. Как справедливо отмечается специалистами, основным направлением современной науки должно быть "обеспечение надежности и долговечности зданий и сооружений при накоплениях повреждений и неординарных техногенных и природно-климатических воздействиях"11.
Поэтому в настоящее время появился целый ряд новых фасадно-облицовочных материалов, таких как керамический гранит, супер наполненные пластмассы, плиты из шлакокаменного литья, стеклофибробетон и др.
Рис 2.9.
Однако кирпич, в силу высокой степени апробации и повсеместной распространенности, в обозримом будущем сохранит свои позиции в качестве облицовочного и конструкционного материала. Различные теплоизоляционные материалы, используемые совместно с кирпичом, придают комбинированным (слоистым) стеновым системам необходимое сопротивление теплопередаче.
Некоторые возможные стеновые системы представлены на рис. 2.9. а, б, в, г, д, с.
Все варианты комбинированных стен (рис. 2.9.) представлены для толщины в 2,5 кирпича, за исключением рис. 2.9. а, где при применении высокоэффективных утеплителей и стеклопластиковых связей толщина стены может быть выполнена в 2 кирпича. Стены меньшей толщины значительно проигрывают в капитальности и устойчивости и в данной работе не рассматриваются.
На рис 2.9. б показана модифицированная колодцевая кладка, которая особенно эффективна с различными засыпками и заливными утеплителями. К тому же в последнее время разработан целый ряд мобильных заливных установок.
Штучные теплоизоляторы используют в совмещенной кладке (рис. 2.9. в), а менее эффективные теплоизоляционные заливные материалы могут быть применены по схеме рис. 2.9. г, где кирпичная кладка выполняет роль опалубки.
Стены из керамблоков "Победа-Кнауф" (рис. 2.9. д). облицованные кирпичом, несколько "не дотягивают" до требуемого сопротивления теплопередаче. Однако здесь может выручить отделка внутренней поверхности эффективными теплоизоляционными материалами.
И, наконец, для материалов низкой теплоэффективности, сочетающих и конструкционные свойства, применяется схема монолитной стены (рис. 2.9. е). Однако такие стены, как правило, теряют в долговечности и эстетичности.
Для различных теплоизоляционных материалов (см. приложение 3 таблицу 2.2.) и схем их применения (рис. 2.9.) определено сопротивление стен теплопередаче Rт.п. по формуле:
Rт.п. = S1/l1+ К*S2/l2,
где S1 и S2 - толщина конструкционного и теплоизоляционного слоя; l - теплопроводность конструкционного и теплоизолирующего слоя; К - коэффициент, учитывающий теплопотери в связях, перемычках и растворных швах.
Полученные данные, представленные в последней графе таблицы, позволяют обеспечивать необходимое сопротивление теплопередаче при выборе теплоизолирующего материала и варианта комбинированной стены.
Анализируя таблицу, можно отметить, что не все варианты использования приведенных материалов обеспечивают необходимый уровень теплозащиты. Так, например, пенобетон с высокой плотностью и низким коэффициентом теплопроводности не может быть использован даже по схеме рис. 2.9. e для монолитной стены, а аэрированный легкий бетон также не обеспечивает необходимую теплозащиту. Пенобетон высокой пористости с от 0,04 до 0,075 при заливке колодцевой кладки по схеме рис. 2.9. б или рис. 2.9. г не только с некоторым запасом обеспечивает необходимую теплозащиту, но и представляется одним из самых эффективных вариантов по себестоимости.
При составлении таблицы хотелось бы привести данные о стоимости 1м2 различных стен, так как себестоимость является одним из основных параметров для сравнения различных стеновых конструкций и материалов, однако в связи с отсутствием устоявшихся цен авторы редко приводят их в своих публикациях.
При разработке комбинированных стен из стеновых материалов следует учитывать как общие, так и индивидуальные требования к свойствам материалов в зависимости от их назначения. В конструкции комбинированной стены функционально необходимо 4 слоя, однако возможно и меньшее число слоев при совмещении одним из них нескольких близких функции. Например, кирпич может быть использован в качестве конструкционно-облицовочного слоя. Возможно и большее число слоев, если теплоизоляционный слой выполняется из двух видов материалов, например из плит ППС и более огнестойкой минераловатной плиты с прокладкой между ними.
Отделочный внутренний слой выполняется, как правило, из нескольких видов материалов и может вносить существенную добавку к сопротивлению теплопередаче стены, особенно в случае недостаточности теплоизоляционного слоя.
Отдельно хотелось бы затронуть вопрос проветривания стен, который в последнее время поднимается многими авторами, занимающимися оптимизацией комбинированных стеновых конструкций. Группа авторов, например12, считает, что "полноценная в эксплуатационном плане 3-слонная стена должна включать воздушную прослойку между наружным слоем и слоем утеплителя"
Вентилируемые полы и стены издавна делают в деревянных конструкциях13, подверженных гниению, а нужно ли это при применении негниющих материалов?
На наш взгляд, это пошло с "легкой руки" рекламных проспектов инофирм14, внедряющих системы навесных фасадов и оправдывающих технологически получаемые пустоты как "вентиляционную систему". С одной стороны, воздушная прослойка действительно способствует более быстрому высыханию стены, с другой стороны, она выключает из теплозащиты наружный лицевой слой и способствует намоканию внутренних слоев при повышенной влажности воздуха.
В любом случае, прежде чем рекомендовать такую вентиляционную систему, которая во многих конструкциях требует дополнительных затрат, необходимо провести исследования и сделать вывод о целесообразности ее применения.
При анализе различных утеплителей, применяемых в комбинированных стенах, необходимо отметить теплозащитные материалы, получаемые на месте строительства путем использования мобильных установок. Такая постановка вопроса теплозащиты видится нам наиболее перспективной, ведь при перевозке утеплителей на объект до 98 %, например, в случае использования ППС, перевозится воздух.
Внедряя новые комбинированные стеновые конструкции, необходимо предусматривать их унификацию с известными в строительстве способами утепления, например колодцевой кладкой. Новые непривычные технологии, требующие переквалификации рабочих, скорее всего так п останутся на бумаге.
При использовании кирпича для изготовления конструкционного и лицевого слоя в комбинированных стеновых системах необходимы такие качества, как стабильность размеров, отсутствие трещин, ровный и яркий цвет лицевой поверхности и т. д.
На большинстве наших кирпичных заводов, выпускающих продукцию, зачастую не удовлетворяющую требованиям строителей, технология и оборудование настолько устарели, что обычной модернизацией отдельных участков здесь уже не обойтись.
Требуется строительство новых заводов с применением современных технологий. Но приобретение современных импортных кирпичных заводов связано с громадными капитальными затрата ми.
Между тем в России разработаны технологии и оборудование, позволяющие получать качественный кирпич.
2.3. Керамические изделия для наружной и внутренней облицовки зданий.
2.3.1. Керамические изделия для облицовки фасадов
Фасадные керамические изделия применяют для облицовки фасадных поверхностей стеновых панелей, блоков, цоколей зданий, лоджий, для отделки архитектурных элементов фасада зданий – поясов, карнизов и создания декоративных панно.
Для отделки сборных конструкций на заводах используют коврово-мозаичные плитки размерами 48х48 и 22х22мм толщиной 2 – 4мм, плитки типа «кабанчик» размером 120х65х7мм, типа брекчия – ковры, набранные из плиточного боя.
Коврово-мозаичные плитки выпускают с естественно окрашенным черепком и глазурованные (Рис. 2.10.). Глазури могут быть глухими и прозрачными, белыми и окрашенными, блестящими и матовыми.
Плитки типа «кабанчик» изготовляют не глазурованными и глазурованными. Их используют для отделки панелей (наклеенными на бумажные ковры), а также для облицовки кирпичных стен.
Ковры типа «брекчия» применяют для облицовки фасадов и в виде акцентных вставок. Бой плиток в таком ковре не должен составлять более 60% общей его площади.
Для облицовки готовых кирпичных и бетонных стен применяют крупноразмерные и цокольные плитки. Крупноразмерные плитки размером 250х140х10мм изготавливают не глазурованными и глазурованными. В настоящее время действует полностью автоматизированная поточная линия для прессования, сушки, глазурования и обжига таких плиток.
Цокольные глазурованные плитки являются изделиями штучного применения; их используют для облицовки зданий и подземных переходов (рис. 2.11.).















