115462 (591938), страница 3
Текст из файла (страница 3)
После данного пункта помещены упражнения (№217) для закрепления умения решать иррациональные неравенства с помощью равносильных переходов, описанных выше.
Все утверждения, сформулированные в данном учебном пособии, изложены со строгим обоснованием. Описан полезный метод при решении иррациональных уравнений – метод «уединения радикала». Не смотря на то, что учебник не отличается обилием упражнений, предлагаемые задания разнообразны, различной степени сложности
Проведенный анализ позволяет сделать следующие выводы:
-
В учебнике [1] материала по методам решения иррациональных уравнений нет. В учебниках [13] и [4] материала по теории способов решения иррациональных уравнений достаточно. В большом объеме теория по общим методам решения рассмотрена учебнике [2] и [10].
-
В каждом учебнике рассмотрены два основных способа решения: возведение обеих частей уравнения в степень, с последующей подстановкой полученных корней в исходное уравнение, а также решение уравнений с помощью равносильных переходов к системе, состоящей из уравнения и неравенства. В учебниках [2] и [10] рассмотрены такие общие методы решения уравнений как метод разложения на множители, метод введения новых переменных, функционально-графический метод; некоторые из них продемонстрированы на примерах решения иррационального уравнения.
-
В учебниках [1] и [13] не рассмотрено решение иррациональных неравенств. В учебнике [2] материала по решению иррациональных неравенств не достаточно. В учебниках [4] и [10] подробно и с теоретическим обоснованием рассмотрено решение иррациональных неравенств вида
,
с помощью равносильного перехода к системе (или совокупности систем). Только в учебнике [4] рассматривается решение иррационального неравенства вида
. -
Наиболее большой объем упражнений для решения иррациональных уравнений и неравенств представлен в учебниках [11] и [5]. В учебнике [4] упражнений немного, но они разнообразны.
§ 2. Методика изучения иррациональных уравнений
2.1. Теоретические основы решения уравнений
2.1.1. Основные понятия, относящиеся к уравнениям
Равенство вида
, (1)
где
и
– некоторые функции, называют уравнением с одним неизвестным x (с одной переменной x). Это равенство может оказаться верным при одних значениях x и неверным при других значениях x.
Число a называется корнем (или решением) уравнения (1), если обе части уравнения (1) определены при
и равенство
является верным. Следовательно, каждый корень уравнения (1) принадлежит множеству, которое является пересечением (общей частью) областей определения функций
и
и называется областью допустимых значений (ОДЗ) уравнения (1).
Решить уравнение – значит найти все его корни или доказать, что корней нет.
Если в условиях задачи не указано, на каком множестве нужно решить уравнение, то решение следует искать в ОДЗ этого уравнения.
В процессе решения часто приходится преобразовывать уравнение, заменяя его более простым (с точки зрения нахождения корней). Есть одно правило, которое не следует забывать при преобразовании уравнений: нельзя выполнять преобразования, которые могут привести к потере корней.
Назовем преобразование уравнения (1) допустимым, если при этом преобразовании не происходит потери корней, то есть получается уравнение
, (2)
которое либо имеет те же корни, что и уравнение (1), либо, кроме всех корней уравнения (1), имеет хотя бы один корень, не являющийся корнем уравнения (1), посторонний для уравнения (1) корень. В связи с этим используют следующие понятия.
Уравнение (2) называется следствием уравнения (1), если каждый корень уравнения (1) является корнем уравнения (2).
Уравнения (1) и (2) называются равносильными (эквивалентными), если каждое из этих уравнений является следствием другого. Иными словами, уравнения (1) и (2) равносильны, если каждый корень уравнения (1) является корнем уравнения (2) и наоборот, каждый корень уравнения (2) является корнем уравнения (1). Уравнения, не имеющие корней, считаются равносильными.
Если уравнения (1) и (2) равносильны, то пишут
или (1)
(2),
а если уравнение (2) является следствием уравнения (1), то пишут
или (1)
(2).
Отметим, что если исходное уравнение с помощью допустимых преобразований заменено другим, причем в процессе преобразования хотя бы один раз уравнение заменялось неравносильным ему следствием, то проверка найденных корней путем подстановки в исходное уравнение является обязательной.
Если же при каждом преобразовании уравнение заменялось равносильным, то проверка не нужна (не следует путать проверку с контролем вычислений).
Рассмотрим еще одно понятие, связанное с решением уравнений. Будем говорить, что уравнение (1) равносильно совокупности уравнений
, (3)
если выполнены следующие условия:
-
каждый корень уравнения (1) является корнем, по крайней мере, одного из уравнений (3);
-
любой корень каждого из уравнений (3) является корнем уравнения (1).
Если указанные условия выполнены, то множество корней уравнения (1) является объединением множеств корней уравнений (3).
Если уравнение записано в виде
, (4)
то каждое решение этого уравнения является решением, по крайней мере, одного из уравнений
(5)
Однако нельзя утверждать, что любой корень каждого из уравнений (5) есть корень уравнения (4).
Например, если
, то
– корень уравнения
, но число 3 не является корнем уравнения (4), так как функция
не определена при
.
Таким образом, в общем случае нельзя утверждать, что уравнение (4) равносильно совокупности уравнений (5). Чтобы решить уравнение (4), достаточно найти корни уравнений
и
, а затем отбросить те, которые не входят в ОДЗ уравнения (4), то есть не принадлежат множеству, на котором определены функции
и
. В ОДЗ уравнения (4) это уравнение равносильно совокупности уравнений (5). Справедливо более общее утверждение: если функция
определена при всех x таких, что
, а функция
определена при всех x таких, что
, то уравнение (4) равносильно совокупности уравнений (5). [18]
2.1.2. Наиболее важные приемы преобразования уравнений
Все преобразования уравнений можно разделить на два типа: [15]
-
Равносильные, то есть преобразования, после применения любых из которых получится уравнение, равносильное исходному.
-
Неравносильные, то есть преобразования, после применения которых может произойти потеря или приобретение посторонних корней.
Рассмотрим некоторые виды преобразований уравнений и проанализируем, к каким типам они относятся.
-
Перенос членов уравнения из одной части в другую, то есть переход от уравнения
(1)
к уравнению
. (2)
Указанное преобразование приводит к равносильному уравнению, то есть (1)
(2).
В частности,
. Заметим, что здесь речь идет только о переносе членов уравнения из одной его части в другую без последующего приведения подобных членов (если таковые имеются). [18]
-
Приведение подобных членов, то есть переход от уравнения
(3)
к уравнению
. (4)
Справедливо следующее утверждение: для любых функций
,
,
уравнение (4) является следствием уравнения (3), то есть (3)
(4).
Переход от уравнения (3) к уравнению (4) является допустимым преобразованием, при котором потеря корней невозможна, но могут появиться посторонние корни.
Таким образом, при приведении подобных членов, а также при отбрасывании одинаковых слагаемых в левой и правой частях уравнения получается уравнение, являющееся следствием исходного уравнения. [18]
Например, если в уравнении
вычеркнуть в левой и правой его частях слагаемое
, то получится уравнение
,
являющееся следствием исходного: второе уравнение имеет корни
,
, а первое – единственный корень
.
Отметим еще, что если ОДЗ уравнения (4) содержится в области определения функции
, то уравнения (3) и (4) равносильны.
-
Умножение обеих частей уравнения на одну и ту же функцию, то есть переход от уравнения (4) к уравнению
. (5)
Справедливы следующие утверждения:
-
если ОДЗ уравнения (4), то есть пересечение областей определения функций
и
, содержится в области определения функции
, то уравнение (5) является следствием уравнения (4); -
если функция
определена и отлична от нуля в ОДЗ уравнения (4), то уравнения (4) и (5) равносильны. [18]
Заметим, что в общем случае переход от уравнения (5) к уравнению (4) недопустим, так как это может привести к потере корней.
При решении уравнений вида (5) обычно заменяют его равносильным уравнением
,
затем находят все корни уравнений
и
и, наконец, проверяют, какие из этих корней удовлетворяют уравнению (5).
-
Возведение обеих частей уравнения в натуральную степень, то есть переход от уравнения
(6)
к уравнению
. (7)
Справедливы следующие утверждения:
-
при любом
уравнение (7) является следствием уравнения (6); -
если
(n – нечетное число), то уравнения (6) и (7) равносильны; -
если
(n – четное число), то уравнение (7) равносильно уравнению
, (8)
а уравнение (8) равносильно совокупности уравнений
,
.
уравнение (7) является следствием уравнения (6);
(n – нечетное число), то уравнения (6) и (7) равносильны;
(n – четное число), то уравнение (7) равносильно уравнению














