115441 (591929), страница 2
Текст из файла (страница 2)
Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению её на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия. [2, с. 175]
Рассмотрим в качестве примера задачу: «В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько детей дежурило в школе?»
Эта задача включает две простых:
В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько мальчиков дежурило в школе?
В школе дежурили 8 девочек и 10 мальчиков. Сколько всего детей дежурило в школе?
Как видим, число, которое было искомым в первой задаче, стало данным во второй.
Последовательное решение этих задач является решением составной задачи: 1)8 + 2=10; 2)8+10=18.
Методика работы с каждым новым видом составных задач ведется в соответствии с тремя ступенями: подготовительная, ознакомительная и закрепление.
Запись решения составной задачи с помощью составления по ней выражения позволяет сосредоточить внимание учащихся на логической стороне работы над задачей, видеть ход решения её в целом. В то же время дети учатся записывать план решения задачи и экономить время.
В решении составной задачи появилось существенно новое сравнительно с решением простой задачи: здесь устанавливается не одна связь, а несколько, в соответствии с которыми вырабатываются арифметические действия. Поэтому проводится специальная работа по ознакомлению детей с составной задачей, а также по формированию у них умений решать составные задачи. Для того, чтобы научить учащихся правильно решать составные задачи, необходимо использовать разные виды текстов задач.
Тексты задач могут различаться по разным основаниям. Рассмотрим их.
-
По структуре текста задачи.
Необходима специальная работа по выделению структурных элементов задачи в текстах различной конструкции. Остановимся на этом подробнее.
В
каждой задаче можно выделить условие и требование. Обозначим схематически условие О, а требование . Тогда задача может иметь одну из конструкций: 1, 2 или 3:
1
. О :
-
Дети пошли в поход. Было 13 мальчиков и 10 девочек, позже к ним присоединились еще 5 детей. Сколько детей пошло в поход?
2) В один бидон вмещается 32 л воды, а во второй - на 12 л меньше. Найди емкость двух бидонов вместе.
2
. О:
3) Сколько марок подарил Петя, если Сереже он подарил 8 марок, а Коле на 5 марок больше?
4) Сколько пассажиров совершало полет, если в самолете было 25 женщин, мужчин на 15 человек больше, чем женщин, а детей на 10 человек меньше, чем женщин?
3
. О О:
-
Мама испекла 20 пирожков. Сколько пирожков осталось после того, как за ужином папа съел пирожков, а сын 5 пирожков?
-
Когда отцу было 40 лет, сыну было 12. Найди возраст сына, когда отцу будет 52 года.
Очевидно, что ученику легче всего выделить условие и требование задачи в первом случае. При чтении задачи он опирается на внешние признаки: сначала формулируется условие, в последнем предложении высказывается требование. Если мы хотим научить выделять структурные элементы задачи и при этом ориентироваться не на внешние признаки, а на смысл, то необходимо предлагать тексты задач различной конструкции. При этом важно, чтобы требование было представлено как в виде вопросительного, так и в виде повествовательного предложения, например:
-
Для отделки одной шторы требуется 8 м тесьмы. Найди длину мотка тесьмы, которая необходима для отделки трех пар таких штор.
-
По записи данных.
В большинстве приведенных примеров необходимые данные записаны с помощью цифр. Выделяя условие и требование, ученики часто только на них и ориентируются. Увидев числа, просто не читают текст, сразу пытаются манипулировать числами. Вот поэтому полезно предлагать тексты задач, где необходимые данные фиксируются разными способами: с помощью цифр, букв, сказочных чисел, словом и т. д. В таком случае ученик будет вынужден внимательно читать задачу, находить связи между данными величинами и искомым.
Приведем примеры таких задач.
-
На горке каталось □ детей. Когда к ним подошло * мальчиков и несколько девочек, то стало О детей. Сколько девочек подошло?
При использовании таких задач видно, на что опирается ребенок при решении задачи: на числовые данные или на смысл задачи. Решение этой задачи может быть записано следующим образом:
Подошло (О - □ - *) девочек.
-
По наличию лишних или недостающих данных.
Для того чтобы научить ученика устанавливать взаимосвязь между искомым и данными, очень полезно предлагать задачи с лишними и недостающими данными, а также задачи, не имеющие по разным причинам решения.
Приведем примеры таких задач.
-
На первой полке лежало 30 книг, на второй - 40, а на третьей на 5 книг
больше, чем на второй. Сколько книг лежало на третьей полке?
Эта задача с лишними данными. Для ее решения нет необходимости знать количество книг, лежащих на первой полке. Для того чтобы правильно ее решить, ученик должен установить, какие величины связаны между собой, а какие нет. Наблюдения показывают, что те дети, которые невнимательно читают задачу, ориентируются только на числовые данные, решают ее неправильно, дают ответ: 25 книг. Они не видят, какие величины сравниваются, не видят необходимое числовое данное - 40 книг на второй полке.
-
Сколько груш росло в саду, если их было на 35 деревьев больше, чем яблонь?
Эта задача с недостающими данными. Анализируя текст, ученик должен сказать, что она не имеет решения, так как в ней не хватает данных. Будет очень хорошо, если он сможет указать недостающее данное, например количество яблонь.
-
Маша в саду собирала ягоды. Она набрала 2 кг смородины и 5 стаканов малины. Сколько ягод собрала Маша?
Данную задачу решить нельзя, так как масса ягод измерена разными мерками, над указанными числами в таком случае производить арифметические действия нельзя.
Такого вида задачи приучают не только внимательно читать текст задачи, но выявлять уровень знаний о величинах.
-
В автобусе ехало 37 человек. Сколько человек осталось в автобусе после того, как на остановке вышло 40 человек?
Данную задачу также решить нельзя, так как предложенные числовые данные не соответствуют смыслу задачи. [23, с. 51]
Примеры текстов задач, которые мы привели, помогут убедить ученика в необходимости анализа текста задачи.
Не успев прочитать задачу, ученики начинают выполнять какие-то арифметические действия с данными числами. Это становится причиной ошибок. Поэтому необходимо научить ученика не торопиться с выбором арифметического действия. Он должен понять, насколько важно внимательно читать текст задачи и может быть не один раз. Для формирования этого умения необходимы специальные задания. Одним из важнейших таких заданий является работа по преобразованию задачи.
1.3. Этапы работы над задачей
Процесс решения задачи - это переход от условия задачи к ответу на ее вопрос.
Первые представления о процессе решения задач создаются у учащихся в первом классе. Ко второму классу они уже знают, что решение любой арифметической задачи состоит из следующих этапов работы:
-
Усвоение содержания текста.
Цель:
-
научить понимать ситуацию в целом;
-
установить смысл каждого слова, словосочетания, предложения;
-
приучиться читать задачу;
-
выделить структурные элементы;
-
установить взаимосвязь между искомым и данными;
-
Поиск решения задач.
Цель:
-
научить ученика задавать самому себе систему вопросов (от вопроса к условию, от условия к вопросу и др.), после ответа на которые он сможет найти решение;
-
составить план решения;
3. Оформление решения.
Цель:
-
записать решение так, чтобы оно было понятно читающему;
4. Проверка решения.
Цель:
-
убедиться в правильности найденного решения.
-
Работа с решенной задачей.
Цель:
-
организовать деятельность ученика так, чтобы он осознал свое продвижение от незнания к знанию;
Царева С.Е. опираясь на диссертацию Лебединцевой В.А., [31, с. 102] предлагает несколько другой подход к выделению этапов решения задачи:
-
Восприятие и осмысление задачи.
Цель:
-
понять задачу, т.е. установить смысл каждого слова, словосочетания, предложения;
-
выделить множества, отношения, величины, зависимости, известные и неизвестные, искомое, требование.
-
Поиск плана решения.
Цель:
-
составить план решения.
-
Выполнение плана решения.
Цель:
-
найти ответ на вопрос задачи (выполнить требование задачи);
4. Проверка решения.
Цель:
-
установить, соответствует ли процесс и результат решения образцу правильного решения;
5. Формировка ответа на вопросы задачи (выводы о выполнении требования).
Цель:
-
дать ответ на вопрос задачи (подтвердить факт выполнения требования задачи);
-
Исследование решения.
Цель:
-
установить, является ли данное решение (результат решения) единственным или возможны и другие результаты (ответы на вопрос задачи), удовлетворяющие условию задачи;
Более в сокращенном виде видит этапы работы над задачей Бантова М.А. [2, с. 174]:
-
Ознакомление с содержанием задачи.
Цель: прочитать задачу; представить жизненную ситуацию, отраженную в задаче;
-
Поиск решения задачи.
Цель: выделить величины, входящие в задачу, данные и искомые числа; установить связи между данными и искомым; выбрать соответствующие арифметические действия.
-
Выполнение решения задачи.
Цель: записать решение.
-
Проверка решения задачи.
Цель: установить правильно оно или ошибочно.
Представленные выше различные подходы к выделению этапов работы над задачей имеют много общего. Во-первых, каждый этап решения есть сложное умственное действие, входящее в состав еще более сложного - решения задачи. Во-вторых, работа над задачей начинается и у Бантовой М.А., и у Туркиной В.М, и у Царевой С.Е., с прочтения, понимания задачи и выделения ее структурных элементов, т.к. именно невнимательно прочитанная задача, отсутствие анализа ее текста становятся причиной ошибок в процессе решения задач.
Поэтому при работе с задачей важно уделить как можно больше внимания 1 этапу решения задачи - усвоению содержания ее текста.
Главная цель ученика на 1 этапе - понять задачу. Методисты предлагают разные приемы работы на этом этапе. Бантова М.А., Царева С.Е. предлагают следующие приемы первичного анализа:
1. Представление жизненной ситуации, описанной в задаче, мысленное участие в ней. (Можно предложить учащимся после чтения задачи нарисовать словесную картинку).
2. Разбиение текста на смысловые части и выбор необходимой для поиска решения. (Можно предложить учащимся определить, правильно ли выделены части и повторить текст задач по частям).
3. Переформулировка текста задачи; замена описания данной в ней ситуации другой, сохраняющей все отношении и зависимости, но более точно их выражающие.
Анализ текста задачи неразрывно связан с этапом поиска решения.
Анализ задачи проводится до тех пор, пока не возникнет идея о плане решения, который позволяет нам рассуждать: от вопроса к данным и от данных к вопросу.















