114695 (591676), страница 5

Файл №591676 114695 (Формирование мотивации учебной деятельности при изучении математических предложений) 5 страница114695 (591676) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Изучение вопроса начинают с рассмотрения конкретных сюжетных задач, способ решения которых для ранее изученных чисел учащимся известен. Принимают соглашение, что для новых чисел задачу решают с помощью «той же операции». Здесь мы имеем содержательное введение операции на новом множестве чисел, как обобщение способа решения задачи. Далее возникает проблема - найти правило, то есть алгоритм выполнения операции для новых чисел. Решение задачи, точнее говоря, результат применения операции к данным числам в каждом случае находят, проводя содержательные рассуждения в соответствии с фабулой задачи, и иногда с использованием геометрической иллюстрации задачной ситуации. В соответствии с принятым соглашением и полученным результатом записывают равенство вида a*b=c. Меняя числовые данные в задаче, как правило, получают несколько таких равенств. Кроме основного равенства в процессе содержательного решения задачи могут быть получены некоторые вспомогательные равенства.

Таким образом, при содержательном введении алгоритма роль сюжетных задач сводиться к получению некоторых равенств, то есть к получению формальных объектов. Чтобы сформулировать правило выполнения операции с новыми числами, нужно провести синтаксический анализ полученных основных равенств, то есть рассмотреть какие объекты имеем в каждой части равенств, установить возможные между ними связи, а используя вспомогательные равенства, выяснить какие использованы ранее известные алгоритмы. При проведении этого анализа рассмотренные сюжетные задачи уже никакой роли не играют. Исходя из проведенного синтаксического анализа, формулируют правило выполнения введенной операции. Если при этом есть несколько принципиальных различных случаев выполнения операции, то такой анализ нужно проводить для каждого случая отдельно. Совокупность правил выполнения операции в различных случаях представляет алгоритм выполнения операции.

Следует заметить, что в школе при введении алгоритмов выполнение действий содержательным способом не всегда должное внимание уделяется приведению синтаксического анализа полученных равенств. Поэтому даже при использовании сюжетных задач нередко правила выполнения действий учитель формулирует сам. Проводить синтаксический анализ различных выражений необходимо учить учащихся не только при введении новых алгоритмов, нужны специально направленные на это упражнения.

Содержательный способ введения алгоритма возможен без содержательного введения операций. В этом случае учащимся уже должно быть известно, что задачу нужно решать с помощью рассматриваемой операции, то есть не нужно вводить соглашение о выполняемой операции. Что касается введения алгоритма, то изучение вопроса следует вести так же как и в рассмотренном выше случае.

Формальный способ введения алгоритма.

Здесь имеются различные возможности:

1) можно построить систему синтаксических упражнений, подводящих учащихся к применению алгоритма выполнения новой операции. Проводя анализ выполненных упражнений, учащиеся приходят к формулировке алгоритма;

2) алгоритмы вводит учитель сам, показывает его применение на примерах и т. д.

При этом способе введения алгоритма после формулировки его и приобретение учащимися некоторого умения применять алгоритм, следует рассмотреть сюжетные задачи с целью мотивировки введенного правила. В этом случае решение задачи нужно найти двумя способами: выполняя операцию по алгоритму и проведя содержательные рассуждения в соответствии с фабулой задачи. Совпадение результата решения задачи разными способами подтверждает целесообразность введения именно таких правил выполнения операции.

Различия в использовании содержательных задач при разных способах введения алгоритмов состоит в том, что при первом способе учащиеся проводят синтаксический анализ равенств, полученных при решении задачи, при втором способе такой анализ не проводиться, так как нас интересует результат выполнения операции по алгоритму и результат, полученный при содержательном решении задачи.

Следует заметить, что не всегда при формальном введении алгоритмов выполнения операций их мотивировку проводят содержательно, иногда мотивировку можно провести формальными средствами.

Первый способ введения алгоритмов выполнения операции наряду с основной целью – формулировкой алгоритма, позволяет развивать у учащихся умение проводить анализ, обобщение, сравнение, то есть способствует развитию мышления. Кроме того, в процессе изучения математики необходимо научить школьников переводить на математический язык содержание задачи, сформулированной в терминах естественного языка, а также осуществлять обратный перевод, то есть интерпретировать символические записи в терминах конкретной задачи. Эти умения связаны с обучением математическому моделированию. При содержательном введении алгоритмов можно показать учащимся, что переход от естественного языка к языку математических знаков:

а) совершенствует форму записи мыслей, делает ее более компактной и обозримой;

б) позволяет в самой структуре языка отражать структурные связи между изучаемыми объектами;

в) дает единую модель для решения разнообразных задач – в этом заключается универсальность математических методов.

Второй способ введения алгоритмов позволяет формировать у учащихся такой элемент алгоритмической культуры, как умение выполнять формальные предписания. Однако следует помнить, что это оперирование по формальному предписанию важно не само по себе, а для достижения определенных целей: познавательных, практических и тому подобное. За знаками, с которыми оперируют по данному алгоритму, стоит определенное внезнаковое содержание, которое отображается с помощью данных знаков. В случае алгоритма в математическом смысле мы отвлекаемся (в определенной мере) от этого содержания. Такое абстрагирование облегчает действия по алгоритму, так как исполнителю не приходиться отвлекать внимание на смысл операций и значение знаков, с которыми оперирует по алгоритму. При решении текстовых задач с использованием известных алгоритмов содержательному толкованию подвергаются лишь исходные данные решаемой задачи и результат ее решения по данному алгоритму. Здесь важно, что бы учащиеся умели устанавливать соответствия между формальными знаками, с которыми работает алгоритм, и отображаемым в них содержанием. Такие умения формируются у учащихся при содержательном введении операций и алгоритмов.

Все три аспекта важны в системе школьного обучения, поэтому при изучении операций и алгоритмов их выполнения следует использовать оба способа их введения.

При содержательном способе введения операций и алгоритмов их выполнения большую роль играет выбор сюжетных задач, которые называются ведущими. В качестве ведущих следует набирать такие задачи, которые удовлетворяют следующим требованиям:

1) при выборе фабулы задачи следует учитывать и использовать практический опыт учащихся;

2) меняя числовые данные в задаче, можно рассмотреть все возможные случаи вводимой операции;

3) содержательный способ решения задачи должен быть адекватным вводимому алгоритму.

Проведение анализа задач, использованных в качестве ведущих, в учебниках математики, с точки зрения высказанных требований, может способствовать улучшению изложения материала учебников.[16]

Рассмотрим содержательный способ введения на примере алгоритма сложения дробей с разными знаменателями.

В начале урока учитель предлагает ученикам для решения следующую задачу:

« Изобразите в тетради такой же квадрат, как на рисунке. Закрасьте ½ квадрата синим цветом, ¼ - красным, 1/8 – желтым, 1/16 – зеленым. Какая часть квадрата осталась незакрашенной? Какая часть квадрата закрашена?»[9]

Ребята без труда ответят на вопросы задачи. Далее учитель задает вопрос: «Как ответить на вопрос задачи, не пользуясь рисунком? С помощью каких действий?». Этот вопрос также не будет затруднительным, ученики без труда ответят, что нужно сложить ½ +1/4 +1/8 + 1/16. Но возникает проблема, как это сделать, так как пока изучено только сложение дробей с одинаковыми знаменателями. Таким образом перед учениками ставиться цель – научиться складывать дроби с разными знаменателями. После этого учитель вводит алгоритм сложения дробей с разными знаменателями:

  1. приведем эти дроби к общему знаменателю;

  2. выполним сложение по правилу сложения дробей с равными знаменателями.

После введения алгоритма и выполнения нескольких примеров на закрепление, без труда решается задача, предложенная в начале урока. Плюс задачи в том, что можно сразу проверить полученный результат с тем, который получился при закрашивании квадрата.

Рассмотрим другой способ введения алгоритма – формальный, на примере сложения десятичных дробей.

В начале урока ученикам предлагаются для решения различные несложные упражнения. Например,

  • Выполнить сложение: 1/7 + 5/7; 1/10 + 7/10.

  • Записать в виде обыкновенной дроби числа: 0,5; 0,07.

  • Представить числа в виде разрядных слагаемых: 457; 4,57; 56; 0,56.

  • Назвать числа, равные числу 4,7.

  • Сложить числа, представив их в виде суммы разрядных слагаемых и применив законы сложения: 286 + 37.

  • В ыполнить сумму, называя каждый раз единицы каких разрядов вы складываете: 5873

326

Далее вводиться сам алгоритм сложения десятичных дробей:

  1. Уровнять число знаков после запятой в слагаемых;

  2. Записать слагаемые друг под другом так, что бы запятая оказалась под запятой;

  3. Сложить полученные числа, как складываются натуральные числа;

  4. Поставить в полученной сумме запятую под запятыми в слагаемых.

После введения алгоритма может быть рассмотрена задача, например:

«В соревнованиях по тройному прыжку Юра сделал прыжки 2,48 м, 2,76 м и 3,42 м, а Саша – 2,54 м, 2,3 м и 3,56 м. Кто из мальчиков стал победителем?»[10]

Заключение

Данное исследование проводилось с целью рассмотреть особенности организации этапа мотивации при введении математических предложений.

Основные задачи, которые ставились перед началом исследования, были выполнены. Анализ психолого-педагогической и учебно-методической литературы показал, что сформированность мотивации является важным качественным показателем эффективности учебно-воспитательного процесса. Но в то же время данной теме уделяется мало внимания, в основном идет упоминание о мотивации, говориться о ее роли, но ее сущность полностью не раскрывается.

В работе рассмотрены психологические характеристики мотивационной сферы учения, а именно потребностей, мотивов, целей, интересов. Главная же направленность мотивационной сферы – мотивы, т.е. направленность учащихся на отдельные стороны учебного процесса.

Выделены различные пути и методы формирования положительной устойчивой мотивации к учебной деятельности. Для получения более эффективного результата следует использовать не один путь, а все пути в определенной системе. Рассмотрена реализация этапа мотивации учебной деятельности при изучении математических понятий, теорем и алгоритмов. По рассмотренным методическим рекомендациям было проведено опытное преподавание.

Гипотеза, выдвинутая в начале работы, подтвердилась в ходе проведения исследования. Действительно, мотивационный этап при введении математических предложений способствует формированию у учащихся положительных мотивов учения и познавательных интересов учебной деятельности.

Библиографический список

  1. Брадис, В.М. методика преподавания математики в средней школе. Государственное учебно-педагогическое издательство министерства просвещения РСФСР. М, 1954г.

  2. Волович, М.Б. Наука обучать. Технология преподавания математики. М. Linka-Press, 1995г.

  3. Возняк, Г.М. Прикладные задачи в мотивации обучения. // Математика в школе. №2, 1990г.

  4. Глейзер, Г.И. История математики в школе. Пособие для учителей. Под редакцией В.Н. Молодшего. М. «Просвещение», 1964г.

  5. Груденов, Я.И.. Совершенствование методики работы учителя математики, М: Просвещение, 1990.

  6. Груденов, Я.И. Изучение определений, аксиом, теорем. М. Просвещение, 1981.

  7. Дробышева, И.В. Мотивация: дифференцированный подход. // Математика в школе. № 4, 2001г.

  8. Дубнов, Я.С. Беседы о преподавании математики. М. «Просвещение», 1965г.

  9. Дорофеев, Г.В., Петерсон, Л.Г. Математика. Учебник для 5 класса. Часть вторая. М. «Баланс», С-инфо, 1997.

  10. Зубарева, И.И., Мордкович, А.Г. Математика. 5 класс. Учебник для общеобразовательных учреждений. М. «Мнемозина», 2003г.

  11. Карелина, Т.М. О проблемных ситуациях на уроках геометрии. // Математика в школе. №6, 1999г.

  12. Лоповок, Л.М. Тысяча проблемных задач по математике. Книга для учащихся. М. Просвещение, 1995г.

  13. Лященко, Е.И. и др. Лабораторные и практические работы по методике преподавания математики. М. Просвещение, 1988.

  14. Маркова А.К., Орлов А.Б., Фридман Л.М. Мотивация учения и ее воспитание у школьников, М. Педагогика, 1983.

  15. Маркова А.К., Т.А. Матис, А.Б. Орлов. Формирование мотивации учения, М. Просвещение, 1990.

  16. Методические разработки по методике преподавания математики в средней школе. М. МГПИ, 1980.

  17. Мордкович, А.Д. Алгебра. 9 класс. Учебник для общеобразовательных учреждений. М. «Мнемозина», 2002 г.

  18. Рогановский, Н.М. Методика преподавания математики в средней школе. Минск. Высшая школа, 1990г.

  19. Саранцев, Г.И. Общая методика преподавания математики. Саранск. Типография «Красный Октябрь», 1999.

  20. Саранцев, Г.И. Эстетическая мотивация в обучении математике. Саранск. Типография «Красный Октябрь», 2003г.

  21. Саранцев, Г.И. Формирование математических понятий в средней школе. // Математика в школе. №6, 1998г.

  22. Скороходова Н.Ю. Психология ведения урока. С.Пб. Речь, 2002.

  23. Таймасханов, У.Д. Создание проблемных ситуаций. // Математика в школе. №5, 1994г.

  24. Фридман, Л.М. Теоретические основы методики обучения математике. Пособие для учителей, методистов и педагогических высших учебных заведений. М. Издательство «Флинта», 1998г.

Приложение 1.

Урок геометрии в 10 классе.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее