113316 (591274), страница 13

Файл №591274 113316 (Особливості вивчення математики в профільних класах у сучасних умовах) 13 страница113316 (591274) страница 132016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 13)

В результаті вивчення теми учні повинні вміти:

  • встановлювати у просторі взаємне розміщення прямих і площин, зокрема паралельність і перпендикулярність прямих, прямої і площини, двох площин;

  • будувати зображення фігур і на зображеннях виконувати нескладні побудови (елементів фігур, точок перетину прямої та площини, двох площин, переріз куба, тетраедра тощо);

  • обчислювати відстані і кути у просторі;

  • застосовувати відношення паралельності і перпендикулярності, а також вимірювання відстаней і кутів у просторі для опису об’єктів фізичного простору.

ЗМІСТ ТЕМИ

Аксіоми стереометрії та найпростіші наслідки з них.

Взаємне розміщення двох прямих у просторі. Паралельність прямої та площини. Паралельність площин. Паралельне проектування та його властивості. Зображення фігур у стереометрії.

Перпендикулярність прямої і площини. Перпендикулярність площин. Ортогональне проектування. Вимірювання відстаней у просторі. Вимірювання кутів у просторі.

МЕТОДИЧНІ РЕКОМЕНДАЦІЇ

Однією з головних особливостей викладання стереометрії повинно бути розумне поєднання наочно-геометричного та логічного у викладі. При вивченні основних понять і фактів, пов’язаних зі взаємним розміщенням прямих і площин, слід віддати перевагу синтетичному, наочно-геометричному викладенню, а потім використовувати вектори та координати для поглиблення та розширення знань учнів при вивченні прямих і площин у просторі. Такий підхід зберігає логічні зв’язки між зазначеними питаннями. Адже для вивчення поняття вектора у просторі і його властивостей використовується паралельність прямих і площин, для введення координат у просторі – перпендикулярність прямої і площини, перпендикулярність площин тощо.

Формування просторових уявлень учнів є головним завданням даної теми. Тому важливе місце треба відвести їх навчанню зображати просторові фігури на площині і застосуванню цих зображень до розв’язування задач. І зробити це доцільно якомога раніше.

Для ілюстрації розглядуваних понять і теорем доцільно використовувати найпростіші тіла, зокрема куб і тетраедр.

У більшості навчальних посібників з геометрії відношення паралельності прямих і площин розглядається раніше перпендикулярності. Цей підхід дозволяє більш чітко і повно подати ідеї аксіоматичної побудови геометрії, сконцентрувати увагу учнів на задачах на доведення і побудову, зокрема на проекційному кресленні.

Особливу увагу необхідно приділити реалізації прикладної спрямованості викладання теми. Головним в цьому є формування чітких уявлень про взаємовідношення властивостей геометричних об’єктів (прямих, площин) і відношень між ними і предметами навколишнього середовища.

При вивченні стереометрії постійно доводиться спиратися на зв’язок між планіметричними та стереометричними поняттями та фактами. З одного боку, необхідно максимально використовувати аналогію між ними у ряді випадків. А з іншого боку, необхідно попередити необґрунтоване перенесення „плоских” результатів у простір.

Конспект уроку

Тема уроку. Основні поняття стереометрії. Просторові тіла. Аксіоми стереометрії.

Мета уроку: ознайомити учнів з основними поняттями стереометрії, сприяти формуванню в учнів уявлень про найпростіші просторові тіла, про аксіоматичний метод, розвитку навичок логічного виведення, а також застосування аксіом стереометрії та наслідків з них до розв’язування задач.

Освоївши матеріал уроку учні повинні:

знати:

  • що вивчає стереометрія;

  • що є найпростішими фігурами простору;

  • аксіоми стереометрії;

  • теореми про існування та єдність площини, що проходить:

  1. через пряму та точку, яка їй не належить;

  2. через три точки, що не лежать на прямій.

вміти:

    • зображати та знаходити на малюнках прямі і площини;

    • застосовувати аксіоми стереометрії та наслідки з них до розв’язування задач;

    • зображати та знаходити на малюнках паралельні, мимобіжні прямі та прямі, що перетинаються.

Хід уроку

І. Вступ

У 10 класі ви починаєте вивчати новий розділ геометрії – стереометрію. У молодших класах ви вивчали такий розділ, як планіметрія, тобто всі фігури (точка, пряма, трикутник, трапеція тощо) ви вивчали на площині. Саму ж площину як фігуру не розглядали.

ІІ. Пояснення нового матеріалу

Основні поняття стереометрії

Стереометрія – це розділ геометрії, що вивчає фігури у просторі. Найпростішими фігурами простору є:

  • точка: А, В, С,...

  • пряма: а, в, с,...

  • площина: ,..., (АВС).

Площину ми уявляємо собі як рівну поверхню кришки столу і тому будемо зображати її у вигляді паралелограму.


площина (АВС)

В загалі площини позначаються грецькими літерами:

. Площина, як і пряма, нескінченна. На малюнку ми позначаємо тільки частину площини, але уявляємо її необмежено продовженою у всі сторони.

площина

Введемо основні позначення:

АВ – пряма;

[АВ] – відрізок;

[АВ) – промінь з початком в точці А;

|АВ| – довжина відрізку;

А є а належить

– точка А прямій а;

А а не належить

(АВС) – площина;

А є належить

– точка площині ;

А не належить

АВ належить

– пряма АВ площині ;

АВ не належить

{А; а} – точка А та пряма а належать площині ; точка А та пряма а визначають площину ;

а ∩ в = К – прямі а і в перетинаються в точці К;

а = N – пряма а і площина перетинаються в точці N;

= АВ – площини і перетинаються по прямій АВ.

Аксіоми стереометрії

Властивості геометричних фігур в стереометрії ми будемо встановлювати шляхом доведення теорем. Але щоб доводити теореми, нам необхідно спиратися на деякі вихідні твердження. Такі твердження називають аксіомами. Оскільки на цих твердженнях ґрунтується доведення теорем стереометрії, то вони отримали назву – група аксіом С.

С1. Яка б не була площина, існують точки, що належать цій площині, і точки, що не належать цій площині.

С2. Якщо дві різні площини мають спільну точку, то вони перетинаються по прямій, що проходить через цю точку.

}

С3. Якщо дві різні прямі мають спільну точку, то через них можна провести площину, і притому тільки одну.

а ∩ в| {а, в},

– єдина.

Таким чином, група аксіом С, а також ті аксіоми, що ви вивчали у молодших класах у розділі планіметрія, і складають систему аксіом стереометрії.

Зауважимо, що не всі аксіоми планіметрії механічно переносяться до системи аксіом стереометрії. Прикладом тому є аксіома ІV: пряма розбиває площину на дві півплощини. Проілюструємо її на рисунку.

Як бачимо, аксіому ІV слід формулювати тепер таким чином: пряма, що належить площині, розбиває її на дві півплощини.

Також нагадаємо аксіому І планіметрії, оскільки вона знадобиться нам для доведення теорем.

І. Яка б не була пряма, існують точки, що належать цій прямій, і точки, що не належать цій прямій. Через будь-які дві точки можна провести пряму, і притому тільки одну.

Наслідки з аксіом

Теорема 1. Через пряму і точку, що належить даній прямій, можна провести площину, і притому тільки одну.

Дано: пряма АВ, точка С АВ.

Довести: 1) існує {АВ, С};

2) єдина.

Доведення

1) Проведемо пряму АС (аксіома І). АС і АВ різні, оскільки С АВ. За аксіомою С3: АВ і АС визначають площину .

2) Доведемо єдність (методом від супротивного).

Нехай існує ще одна площина , що проходить через АВ і точку С. За аксіомою С2: точки А, В і С повинні лежати на одній прямій. Це суперечить умові, що С АВ. Припущення не вірне.

    • Маємо дві точки А і С, яку аксіому планіметрії можна використати?

    • Погляньте на малюнок: маємо дві прямі, що перетинаються. Яка аксіома тут працює?

    • Яким методом в геометрії доводиться єдність чого-небудь?

    • З якою умовою задачі ми отримали протиріччя?

Теорему доведено.

Теорема 2. Якщо дві точки прямої належать площині, то вся пряма належить цій площині.

А |

.

В |

Опорна задача. Якщо дві площини мають дві спільні точки, то вони перетинаються по прямій, що містить ці точки.

Н аслідок. Пряма і площина

не перетинаються

(немає спільних точок) перетинаються

(мають одну спільну точку)

(принаймні дві

спільні точки)

Теорема 3. Через три точки, що не лежать на одній прямій, можна провести площину, і притому тільки одну.

Дано: а.

Довести: 1) існує ;

2) – єдина.

Доведення.

1) Проведемо прямі АВ і АС (аксіома І), вони різні, оскільки а. За аксіомою С3: через прямі АВ і АС можна провести площину .

2) Доведемо єдність.

За теоремою 2: . За аксіомою С3 така площина єдина.

Теорему доведено.

Побудова перерізів просторових фігур

Перерізом многогранника називається многокутник, що утворюється при перетині многогранника з площиною.

Щоб будувати прості перерізи, слід вміти будувати:

1) лінію перетину двох площин

Для цього знаходять дві точки шуканої прямої і через них проводять пряму

2) точку перетину прямої і площини

Для цього знаходять у даній площині пряму, що перетинає дану пряму; точка перетину цих прямих є шуканою. Ці прямі повинні лежати в одній площині

ІІІ. Практичне закріплення нового матеріалу

Задача 1. Дано зображення піраміди SABC. Побудувати переріз піраміди площиною , що проходить через ребро АВ і точку К.

Розв’язання

При розв’язуванні використаємо опорну задачу.

1) К є (SCB),

K є ,

В є (SCB),

B ,

2 ) К є (SCA),

Характеристики

Тип файла
Документ
Размер
3,35 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее