112852 (591190), страница 3
Текст из файла (страница 3)
Цель: сформировать понятие равносильности, научиться применять на практике полученные знания.
Эту тему дают обычно уже в конце 5 класса, когда ученики уже знакомы со знаком равносильности, который они использовали для краткой записи свойств делимости.
Следует отметить, что понятие равносильности предложений относится не столько к математике, сколько к естественному языку. Как в обычном, так и в математическом языке одну и ту же мысль можно выразить несколькими разными способами. Например:
-
32 32.
-
Саша – брат Кати, Катя – сестра Саши.
-
5x + 10 = 15, x = 1.
Обратите внимание на знак равносильности, который употребляется для краткой записи утверждения и обозначает, что два предложения означают одно и то же. Например:
3 < 5 5 > 3
Обратите внимание на то, что если убрать из него стрелки слева и справа, то останется знак равенства. Знак равенства между двумя числовыми выражениями показывает, что эти выражения имеют одно и то же значение. Точно так же, как при преобразованиях числовых выражений мы пишем цепочку равенств:
Так же следует отметить, что равносильные высказывания одновременно истинны или ложны. Например, высказывания «Некоторые цветы бывают синими» и «Встречаются синие цветы» истинны. Но даже очень похожие по виду выказывания могут быть одно истинным, а другое ложным. Например, высказывания «Все кошки четвероногие» и «Все четвероногие - кошки», не являются эквивалентными, так как первое высказывание истинное, а второе ложное.
На этом этапе следует закрепить материал. Задания могут быть следующего содержания:
-
Выяснить, какие из приведенных пар высказываний являются эквивалентными:
а) Число x делится на 2.
Число x оканчивается на 2.
б) Хищники не едят траву.
Нет хищников, которые не едят траву.
в) Не все металлы тонут в воде.
Есть металлы, которые не тонут в воде.
-
Используя знак равносильности, записать решение уравнений:
а) 2а – 3 = 25
б) 34 + 18 * в = 43
3) Записать в виде равенств утверждения, равносильные следующим:
а) Число m на 5 больше числа р.
б) При делении числа а на число b получается в частном с.
-
Какие из следующих утверждений верны:
а) Число x в 2 раза больше y x = y + 2
б) Число m составляет 30 % числа n m = n/ 100 * 30
в) Углы А и В смежные Сумма углов А и В равна 180 градусов.
Отрицание высказываний
Эту тему можно ввести в начале 6 класса, т. к. здесь ученики начинают решать более сложные задачи, которые требуют правильности в рассуждениях.
Цель: сформировать понятие отрицания, научиться строить отрицание высказываний, изучить закон исключенного третьего, научиться применять на практике полученные знания.
Мотивация: нередко в жизни людям приходится спорить. Каждый в споре, доказывая свою правоту, убеждает собеседника, что тот не прав. Но всегда в споре кто-то прав, а кто-то ошибается. Тогда говорят, что их утверждения отрицают друг друга. Каждое из них называется отрицанием другого.
Приведем примеры предложений, в которых в каждой паре высказываний одно является отрицанием другого.
№ | Высказывание | Отрицание |
1. | У Маши есть котенок. | У Маши нет котенка. |
2. | 100 больше, чем 50. | 100 не больше, чем 50. |
3. | Верно, что все птицы летают. | Неверно, что все птицы летают. |
4. | 10 делится на 4. | 10 не делится на четыре. |
5. | Щенок Миши спит на кресле. | Щенок Миши не спит на кресле. |
Вывод: из таблицы ясно, что как высказывание, так и отрицание может быть ложным. Если высказывание – истина (ложь), то его отрицание - ложь (истина).
Далее необходимо переключить внимание учеников на математику, отметив, что в математике также нередко встречаются задачи, в которых приходится строить отрицания. Это необходимо для того, чтобы отбросить все лишние, «ненужные» случаи и получить единственно правильное решение.
Так как с отрицаниями нам приходится встречаться и в математике, и в жизни, очень важно научиться правильно формулировать отрицание любого заданного предложения. И на этом этапе необходимо дать определение отрицанию.
Отрицание есть логическая операция, превращающая истинное высказывание в ложное, а ложное высказывание в истинное.
Символически отрицание записывается как , где
– сложное или простое высказывание, а символы означают операцию отрицания. Читается: неверно, что А. Например:
В нашем доме живет белая кошка.
Его отрицание будет звучать следующим образом:
Неверно, что в нашем доме живет белая кошка.
Делаем вывод о том, что для формулировки отрицания сначала «мысленно» присоединяем к предложению слова «Неверно, что», а затем «обрабатываем» полученное отрицание так, чтобы оно звучало грамотно. Для этого рассмотрим таблицу:
№ | Предложение | Первая формулировка отрицания | Вторая формулировка отрицания. |
1. | Полуостров Таймыр – родина апельсинов. | Неверно, что полуостров Таймыр – родина апельсинов. | Полуостров Таймыр не является родиной апельсинов. |
2. | У бабушки в деревне живут только куры. | Не верно, что у бабушки в деревне живут только куры. | У бабушки в деревне живут не только куры, но и гуси. |
3. | Оля и Вася учатся в одной школе. | Не верно, Оля и Вася учатся в одной школе. | Оля и Вася учатся в разных школах. |
4. | Все спотрсмены ловкие. | Не верно, что все спотрсмены ловкие. | Не все спотрсмены ловкие. |
5. | Есть дома, которые имеют больше десяти этажей. | Не верно, что есть дома, которые имеют больше десяти этажей. | Нет домов, которые имеют больше десяти этажей. |
Необходимо сформулировать закон исключенного третьего: если данное предложение истинно, то его отрицание ложно, и наоборот, если данное предложение ложно, то его отрицание истинно.
Примерные задания:
-
Скажите то же самое по-другому:
а) Неверно, что все млекопитающие живут на суше.
б) Неверно, что 5 делится на 2.
в) Неверно, что некоторые рыбы летают.
2. Построить отрицание предложений с помощью слова неверно и в более простой форме.
а) Сегодня будет солнечно.
б) Все собаки любят кошек.
в) Курица – домашняя птица.
г) Весной снег всегда тает.
д) 150 меньше 200.
е) Математика – точная наука.
3) Придумать свои предложения и построить их отрицание.
4) Доказать, что высказывание является ложным и построить его отрицание:
а) Число 0 является натуральным.
б) Между числами 4 и 5 нет натуральных чисел.
в) Неправильная дробь меньше единицы.
Логическое следование
Так как эта тема не входит в минимум содержания обучения, ее следует давать на кружках в 6 классе.
Цель: сформировать понятие логического следования, научиться применять на практике полученные знания.
Мотивация: Вспомните такие знаменитые высказывания:
Тише едешь – дальше будешь.
Подальше положишь – поближе возьмешь.
Или совсем простой пример из жизни:
Если вода нагревается, то она испаряется.
Что объединяет эти предложения?
Во всех трех предложениях мы из чего-то делаем вывод.
Рассмотрим следующее высказывание:
Если прошел дождь (А), то асфальт мокрый (В).
-
Если дождь на самом деле прошел, то асфальт действительно будет мокрым. В этом случае высказывание будет истинным.
-
Допустим, что А - ложное, т.е. дождя не было, но асфальт сырой. Сырым он мог оказаться после того как прошла поливочная машина. В этом случае высказывание А истинно.
-
Если дождя не было, то асфальт остался сухим. Высказывание истинно.
-
Представьте, что дождь прошел, а асфальт остается сухим. Это не возможно. Высказывание ложно.
Составим таблицу истинности:
№ | А | В | А-В |
1 | и | и | и |
2 | и | л | л |
3 | л | и | и |
4 | л | л | и |
Исходя из таблицы, можем дать определение логического следования.
Логическое следование– это логическая операция, которая объединяет два высказывания в такое новое высказывание, которое является ложным при истинности первого высказывания и ложности второго, во всех остальных случаях высказывание истинно.
В математике есть специальный знак следования , который соединяет два предложения с переменными и делает из них новое высказывание общего вида: из первого предложения следует второе. Первое предложение называют условием, а второе – заключением, или следствием первого.
«Если Р, то Q» или «Из Р следует Q».
Примерные задания:
-
Сформулировать предложения, используя глагол «следует»:
а) если животное млекопитающее, то оно кормит детей молоком;
б) если вода превратилась в лед, то ее температура отрицательная.
2) Назови условие и заключение:
а) Если число оканчивается на 0, то оно кратно 5.
б) Если сумма цифр числа делится на 3, то и само число делится на 3.
в) Если каждое слагаемое делится на некоторое число, то их сумма тоже делится на это число.
3) Прочитай высказывания и определи, истинны они или ложны. В каких высказываниях условие и заключение поменялись местами?
а) n кратно 8 n кратно 4;
б) n кратно 4 n кратно 8;
Конъюнкция высказываний А В
Так как данная тема не входит в минимум содержания обучения, то ее можно дать ученикам на кружках в 6 классе.
Цель: сформировать понятие конъюнкции, отработать на практике полученные знания, научиться применять на практике.