112852 (591190), страница 3

Файл №591190 112852 (Методика преподавания темы "Элементы логики" в курсе математики 5-6 классов) 3 страница112852 (591190) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Цель: сформировать понятие равносильности, научиться применять на практике полученные знания.

Эту тему дают обычно уже в конце 5 класса, когда ученики уже знакомы со знаком равносильности, который они использовали для краткой записи свойств делимости.

Следует отметить, что понятие равносильности предложений относится не столько к математике, сколько к естественному языку. Как в обычном, так и в математическом языке одну и ту же мысль можно выразить несколькими разными способами. Например:

  1. 32 32.

  2. Саша – брат Кати, Катя – сестра Саши.

  3. 5x + 10 = 15, x = 1.

Обратите внимание на знак равносильности, который употребляется для краткой записи утверждения и обозначает, что два предложения означают одно и то же. Например:

3 < 5 5 > 3

Обратите внимание на то, что если убрать из него стрелки слева и справа, то останется знак равенства. Знак равенства между двумя числовыми выражениями показывает, что эти выражения имеют одно и то же значение. Точно так же, как при преобразованиях числовых выражений мы пишем цепочку равенств:

Так же следует отметить, что равносильные высказывания одновременно истинны или ложны. Например, высказывания «Некоторые цветы бывают синими» и «Встречаются синие цветы» истинны. Но даже очень похожие по виду выказывания могут быть одно истинным, а другое ложным. Например, высказывания «Все кошки четвероногие» и «Все четвероногие - кошки», не являются эквивалентными, так как первое высказывание истинное, а второе ложное.

На этом этапе следует закрепить материал. Задания могут быть следующего содержания:

  1. Выяснить, какие из приведенных пар высказываний являются эквивалентными:

а) Число x делится на 2.

Число x оканчивается на 2.

б) Хищники не едят траву.

Нет хищников, которые не едят траву.

в) Не все металлы тонут в воде.

Есть металлы, которые не тонут в воде.

  1. Используя знак равносильности, записать решение уравнений:

а) 2а – 3 = 25

б) 34 + 18 * в = 43

3) Записать в виде равенств утверждения, равносильные следующим:

а) Число m на 5 больше числа р.

б) При делении числа а на число b получается в частном с.

  1. Какие из следующих утверждений верны:

а) Число x в 2 раза больше y x = y + 2

б) Число m составляет 30 % числа n m = n/ 100 * 30

в) Углы А и В смежные Сумма углов А и В равна 180 градусов.

Отрицание высказываний

Эту тему можно ввести в начале 6 класса, т. к. здесь ученики начинают решать более сложные задачи, которые требуют правильности в рассуждениях.

Цель: сформировать понятие отрицания, научиться строить отрицание высказываний, изучить закон исключенного третьего, научиться применять на практике полученные знания.

Мотивация: нередко в жизни людям приходится спорить. Каждый в споре, доказывая свою правоту, убеждает собеседника, что тот не прав. Но всегда в споре кто-то прав, а кто-то ошибается. Тогда говорят, что их утверждения отрицают друг друга. Каждое из них называется отрицанием другого.

Приведем примеры предложений, в которых в каждой паре высказываний одно является отрицанием другого.

Высказывание

Отрицание

1.

У Маши есть котенок.

У Маши нет котенка.

2.

100 больше, чем 50.

100 не больше, чем 50.

3.

Верно, что все птицы летают.

Неверно, что все птицы летают.

4.

10 делится на 4.

10 не делится на четыре.

5.

Щенок Миши спит на кресле.

Щенок Миши не спит на кресле.

Вывод: из таблицы ясно, что как высказывание, так и отрицание может быть ложным. Если высказывание – истина (ложь), то его отрицание - ложь (истина).

Далее необходимо переключить внимание учеников на математику, отметив, что в математике также нередко встречаются задачи, в которых приходится строить отрицания. Это необходимо для того, чтобы отбросить все лишние, «ненужные» случаи и получить единственно правильное решение.

Так как с отрицаниями нам приходится встречаться и в математике, и в жизни, очень важно научиться правильно формулировать отрицание любого заданного предложения. И на этом этапе необходимо дать определение отрицанию.

Отрицание есть логическая операция, превращающая истинное высказывание в ложное, а ложное высказывание в истинное.

Символически отрицание записывается как , где – сложное или простое высказывание, а символы означают операцию отрицания. Читается: неверно, что А. Например:

В нашем доме живет белая кошка.

Его отрицание будет звучать следующим образом:

Неверно, что в нашем доме живет белая кошка.

Делаем вывод о том, что для формулировки отрицания сначала «мысленно» присоединяем к предложению слова «Неверно, что», а затем «обрабатываем» полученное отрицание так, чтобы оно звучало грамотно. Для этого рассмотрим таблицу:

Предложение

Первая формулировка отрицания

Вторая формулировка отрицания.

1.

Полуостров Таймыр – родина апельсинов.

Неверно, что полуостров Таймыр – родина апельсинов.

Полуостров Таймыр не является родиной апельсинов.

2.

У бабушки в деревне живут только куры.

Не верно, что у бабушки в деревне живут только куры.

У бабушки в деревне живут не только куры, но и гуси.

3.

Оля и Вася учатся в одной школе.

Не верно, Оля и Вася учатся в одной школе.

Оля и Вася учатся в

разных школах.

4.

Все спотрсмены ловкие.

Не верно, что все спотрсмены ловкие.

Не все спотрсмены ловкие.

5.

Есть дома, которые

имеют больше десяти этажей.

Не верно, что есть дома, которые

имеют больше десяти этажей.

Нет домов, которые

имеют больше десяти этажей.

Необходимо сформулировать закон исключенного третьего: если данное предложение истинно, то его отрицание ложно, и наоборот, если данное предложение ложно, то его отрицание истинно.

Примерные задания:

  1. Скажите то же самое по-другому:

а) Неверно, что все млекопитающие живут на суше.

б) Неверно, что 5 делится на 2.

в) Неверно, что некоторые рыбы летают.

2. Построить отрицание предложений с помощью слова неверно и в более простой форме.

а) Сегодня будет солнечно.

б) Все собаки любят кошек.

в) Курица – домашняя птица.

г) Весной снег всегда тает.

д) 150 меньше 200.

е) Математика – точная наука.

3) Придумать свои предложения и построить их отрицание.

4) Доказать, что высказывание является ложным и построить его отрицание:

а) Число 0 является натуральным.

б) Между числами 4 и 5 нет натуральных чисел.

в) Неправильная дробь меньше единицы.

Логическое следование

Так как эта тема не входит в минимум содержания обучения, ее следует давать на кружках в 6 классе.

Цель: сформировать понятие логического следования, научиться применять на практике полученные знания.

Мотивация: Вспомните такие знаменитые высказывания:

Тише едешь – дальше будешь.

Подальше положишь – поближе возьмешь.

Или совсем простой пример из жизни:

Если вода нагревается, то она испаряется.

Что объединяет эти предложения?

Во всех трех предложениях мы из чего-то делаем вывод.

Рассмотрим следующее высказывание:

Если прошел дождь (А), то асфальт мокрый (В).

    1. Если дождь на самом деле прошел, то асфальт действительно будет мокрым. В этом случае высказывание будет истинным.

    2. Допустим, что А - ложное, т.е. дождя не было, но асфальт сырой. Сырым он мог оказаться после того как прошла поливочная машина. В этом случае высказывание А истинно.

    3. Если дождя не было, то асфальт остался сухим. Высказывание истинно.

    4. Представьте, что дождь прошел, а асфальт остается сухим. Это не возможно. Высказывание ложно.

Составим таблицу истинности:

А

В

А-В

1

и

и

и

2

и

л

л

3

л

и

и

4

л

л

и

Исходя из таблицы, можем дать определение логического следования.

Логическое следование– это логическая операция, которая объединяет два высказывания в такое новое высказывание, которое является ложным при истинности первого высказывания и ложности второго, во всех остальных случаях высказывание истинно.

В математике есть специальный знак следования , который соединяет два предложения с переменными и делает из них новое высказывание общего вида: из первого предложения следует второе. Первое предложение называют условием, а второе – заключением, или следствием первого.

«Если Р, то Q» или «Из Р следует Q».

Примерные задания:

  1. Сформулировать предложения, используя глагол «следует»:

а) если животное млекопитающее, то оно кормит детей молоком;

б) если вода превратилась в лед, то ее температура отрицательная.

2) Назови условие и заключение:

а) Если число оканчивается на 0, то оно кратно 5.

б) Если сумма цифр числа делится на 3, то и само число делится на 3.

в) Если каждое слагаемое делится на некоторое число, то их сумма тоже делится на это число.

3) Прочитай высказывания и определи, истинны они или ложны. В каких высказываниях условие и заключение поменялись местами?

а) n кратно 8 n кратно 4;

б) n кратно 4 n кратно 8;

Конъюнкция высказываний А В

Так как данная тема не входит в минимум содержания обучения, то ее можно дать ученикам на кружках в 6 классе.

Цель: сформировать понятие конъюнкции, отработать на практике полученные знания, научиться применять на практике.

Характеристики

Тип файла
Документ
Размер
464,43 Kb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6624
Авторов
на СтудИзбе
295
Средний доход
с одного платного файла
Обучение Подробнее