112643 (591154), страница 3

Файл №591154 112643 (Комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников) 3 страница112643 (591154) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

После съездов в 1911-1916 гг. вышло большое количество учебных пособий, которые отражали смешение вопросов о трактовке понятия функции и способов ее задания, т.е. содержали рассмотрение способов задания функции (аналитического, графического, табличного) в контексте понятия функции.

Третий этап развития русской школы начался в 20-е гг. двадцатого столетия. Анализ методической литературы советского периода показал, что введение понятия функции в школьный курс математики сопровождалось бурными дискуссиями, и позволил нам выделить четыре основных проблемы, вокруг которых существовали расхождения во мнениях методистов, а именно: 1) цель и значение изучения понятия функции учащимися; 2) подходы к определению функции; 3) вопрос функциональной пропедевтики; 4) место и объем функционального материала в курсе школьной математики начальной школы.

Первые послереволюционные программы, составленные в 1918-1921гг., отражали стремление их авторов к коренному преобразованию школьного курса математики начальной школы. При их разработке были учтены основные достижения передовой педагогической мысли того времени: курс математики строился на основе понятия функции. Авторы программ считали, что все включенное в программу "должно быть проработано основательно, главным образом, в направлении развития функционального мышления, при этом идейной и практической стороне должно отдать предпочтение перед формальной" [11, с.380].

Анализ программ позволил выделить их положительные и отрицательные стороны. Главное достоинство, на наш взгляд, - это разделение вопросов о трактовке понятия функциональной зависимости и способах задания функции. Общим недостатком была перегруженность их в той' или иной степени учебным материалом, который, к тому же, был распределен по годам обучения без учета возрастных особенностей учащихся. Как следствие, на практике не удалось в полном объеме выполнить предъявленные данными программами требования.

Не исправили положение программы на основе "комплексного" метода, суть которого состояла в том, что взамен систематического изложения школьного курса математики начальной школы, опирающегося на внутреннюю логику предмета, преподавание строилось в соответствии с последовательностью, содержанием и основными идеями комплексных схем. Известный советский методист Н.Н. Никитин указывал на утилитарность комплексных программ и методических указаний к ним, приведшую к снижению уровня математической подготовки учащихся. "Учащиеся получали поверхностное, случайное знакомство со многими вопросами из математики, но по-настоящему прочно и сознательно знать ничего не могли" [37, с.115].

Итак, данный этап, полностью обусловленный политической и экономической нестабильной ситуацией в России 20-х гг., характеризуется разногласием в действиях методистов, их стремлением к отказу от достижений в области отечественной методики преподавания математики. Разногласия методистов в решении проблем, связанных с определением цели и значения изучения функции учащимися, места и объема функционального материала в курсе школьной математики, а также отсутствие единого мнения по вопросу функциональной пропедевтики привели к ухудшению качества знаний учащихся.

Кризисная ситуация в области преподавания математики вызвала необходимость пересмотра и проверки методов школьной работы.

Четвертый этап обусловлен переводом экономики РСФСР на плановую основу.

В 1931-34 годы была предпринята попытка перехода школьного образования на позиции систематического и прочного усвоения наук. В данный период срок обучения в школе был увеличен до десяти лет, основной формой работы в школе был утвержден урок, была восстановлена роль учебника как основного руководства для ученика, с систематическим изложением основ наук и полным охватом содержания программы по предмету.

Формирование представления о функции, прежде всего как об аналитическом выражении, ученые расценивают как проявление формализма в преподавании, для которого "характерно неправомерное доминирование в сознании и памяти учащихся привычного внешнего (словесного, символического или образного) выражения математического факта над содержанием этого факта" [21, с.46].

Они считали, что в начальной школе понятие функции необходимо изучать на основе понятия соответствия. Для нашего исследования важным является подход А.Я. Хинчина к разработке системы упражнений, способствующих усвоению понятия функции. Он указывал, что традиционные примеры, рассматриваемые непосредственно после введения понятия функции, способны разрушить положительный эффект определения и привить учащимся мысль, что формальное определение само по себе, а в действительности функция есть просто формула. По его мнению, уже среди первых примеров функциональной зависимости наряду с традиционными алгебраическими и геометрическими соотношениями необходимо рассматривать и функции, заданные без использования формулы.

Данный период характеризуется недостаточностью времени на изучение функций, непродуманностью систем упражнений, непониманием учащимися истинной сущности понятия функции, низким уровнем функциональных и графических навыков выпускников школ.

Таким образом, вновь возникла потребность в реформировании преподавания математики в начальной школе. Перестройка всей школьной математики на основе теоретико-множественного подхода ознаменовала пятый этап развития идеи функциональной зависимости. Идея, теоретико-множественного подхода была предпринята группой французских ученых, объединившихся под псевдонимом Николя Бурбаки. В г. Роймоне (Франция, 1959 г.) состоялось международное совещание, на котором было провозглашено свержение всех обычных курсов. В центре внимания оказались структуры и объединения всей школьной математики на базе теории множеств [25, с.174].

Важную роль в развитии идей реформы сыграли статьи В.Л. Гончарова, в которых автор указывал на важность ранней и длительной функциональной пропедевтики, предлагал использовать упражнения, заключающиеся в выполнении ряда заранее указанных числовых подстановок в одном и том же заданном буквенном выражении. Эти упражнения, наряду с совершенствованием вычислительных навыков, могли бы служить и идеям функциональной пропедевтики. Ученый особое внимание отводил построению графика функции, заданной использованным для вычислений буквенным выражением. Особую целесообразность он видел в том, "чтобы две капитальной важности и высокой трудоемкости проблемы — сообщения учащимся прочных навыков арифметических вычислений и пропедевтическое ознакомление их с идеей функции могли быть разрешаемы совместно" [22, с.153].

Таким образом, стабилизация программ и учебников создала почву для возникновения положительных сдвигов в качестве функциональных знаний учащихся. В конце шестидесятых - начале семидесятых, наряду с отрицательными отзывами, в печати стали появляться и такие, в которых отмечалось определенное улучшение знаний школьников о функциях и графиках. Однако общий уровень математического развития учащихся в целом оставался недостаточным. В школьном курсе математики по-прежнему неоправданно много времени отводится формальной подготовке и не уделяется должного внимания формированию представлений младших школьников о функциональной зависимости.

Виды упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников мы рассмотрим в следующем параграфе.

    1. Виды упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников

Для организации учебной деятельности учащихся начальных классов, направленной на эффективную подготовку к формированию представлений о функциональной зависимости должны выполняться следующие дидактические условия: наличие в курсе математики идей, непосредственно связанных с функциональными представлениями, таких как идея изменения, соответствия, закономерности и зависимости; наличие в содержании курса математики понятий, необходимых для осознанного усвоения понятия функции; создание проблемных ситуаций в процессе усвоения программного содержания; систематическое использование различных моделей (предметной, вербальной, символической, схематической и графической); использование учебных заданий, в основу которых положены приемы выбора, сравнения, преобразования и конструирования; организация целенаправленного наблюдения, сравнения, анализа и обобщения в процессе выполнения учебных заданий [4, с.110].

Для организации деятельности учащихся, направленной на формирование функциональных представлений и понятий, необходимых для восприятия и усвоения понятия «функция», целесообразно использовать учебные задания следующих видов: задания на тождественные преобразования числовых выражений (равенств) на основе смысла арифметического действия; на соотнесение предметной модели с числовым выражением (равенством); на соотнесение предметной, графической и символической моделей; на выявление закономерности; на установление соответствия между символическими моделями; на конструирование графической модели по заданной графической модели; на конструирование символической модели по заданной вербальной модели; на выбор символической модели, соответствующей вербальной модели; на конструирование числовых равенств по заданным условиям; на установление соответствия между символической и графической моделью; на выбор графической модели соответствующей символической модели; на преобразование на плоскости; на конструирование графической модели, соответствующей символической модели и т.д. [5, с.23].

Учебные задания, способствующие формированию функциональных представлений и понятий, необходимых для осознанного усвоения понятия функции, должны характеризоваться:

1) вариативностью;

2) неоднозначностью решений;

3) нацеленностью на формирование приемов умственной деятельности (таких, как анализ и синтез, сравнение, аналогия, классификация и обобщение);

4) отображением разнообразных закономерностей и зависимостей;

5) включенностью их в содержательную линию курса математики начальных классов [17, с.81].

На основе функциональных представлений разработаны учебные задания, направленные на их формирование:

  1. Задания на формирование представлений об изменении и зависимости: на изменение результата арифметического действия в зависимости от изменения его компонентов; на использование основного свойства дроби; на классификацию числовых выражений (равенств) на основе их результата арифметического действия; тождественные преобразования числовых выражений (равенств) на основе смысла арифметического действия; на преобразование числовых выражений; на преобразование дробных выражений; на конструирование символической модели по заданной вербальной модели и др.).

Например, «Чем похожи все пары выражений? Найди их значения:

а) 89 + 47 б) 57+29 в) 76+57

90 + 47 57+30 76+60

Сравни равенства в каждой паре и сделай вывод».

  1. Задания на формирование представления о закономерности, как правила, по которому записаны ряды чисел: на выявление закономерности.

Например, «Найди правила, по которым составлены ряды чисел:

а) 0,5; 0,05; 0,005; 0,0005; …;

б) 0,2; 0,4; 0,6; 0,8; …;

в) 0,12; 2,14; 4,16; 6,18; ….

Запиши в каждом ряду еще три числа по тому же правилу».

  1. Задания на формирование представления о соответствии: на соотнесение предметной, графической и символической моделей; на установление соответствия между символическими моделями.

Например, «Соедини с числом 5 те выражения, значения которых делятся на 5, если а делится на 5».


Эти учебные задания формулируются в основном на числовом материале, причем они усложняются и варьируются как по форме, так и по содержанию.

Решение задач на прямую и обратную пропорциональные зависимости посвящен решению текстовых задач на прямую и обратную пропорциональные зависимости арифметическим способом. Среди таких задач выделяются задачи, в которых числовые данные находятся в некотором отношении, что предполагает ещё один способ решения, представляющий интерес с точки зрения функциональной пропедевтики [36, с.105].

Кроме того, придать функциональный характер текстовым задачам можно с помощью дополнительных вопросов, направленных на изменение данных задачи, условия, вопроса, на соотнесение условия с различными выражениями и равенствами. Эти приемы помогают учащимся представить величины, рассматриваемые в задаче в движении, изменении, что позволяет формировать у учащихся функциональный стиль мышления.

На программном содержании курса математики начальных классов используются также учебные задания следующих видов:

  1. задания на соотнесение предметной модели с числовым выражением (равенством);

  2. задания на установление соответствия между символическими моделями;

  3. задания на конструирование графической модели по заданной графической модели;

  4. задания на конструирование символической модели по заданной вербальной модели;

  5. задания на выбор символической модели, соответствующей вербальной модели;

  6. задания на конструирование числовых равенств по заданным условиям;

  7. задания на установление соответствия между символической и графической моделью;

  8. задания на выбор графической модели, соответствующей символической модели;

  9. задания на преобразование на плоскости;

  10. задания на конструирование графической модели, соответствующей символической модели и т.д. [20, с.110].

Приведем примеры заданий:

    1. Задание на конструирование числовых равенств по заданным условиям:

Выбери два отношения, из которых можно составить верное равенство. Запиши это равенство:

1,5 : 2; 3 : 6; 4,5 : 8; 6 : 8; 15 : 10.

    1. Задание на конструирование графической модели, соответствующей символической модели:

Проверь, будут ли величины х и у прямо пропорциональными при данных значениях:

х

1

4

16

64

256

у

0,6

2,4

9,6

38,4

153,6

Если возникнут трудности при выполнении задания, то:

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее