112547 (591141), страница 4
Текст из файла (страница 4)
Сведения о программных продуктах, поставляемых с NOVA5000.
Комплект программных продуктов SoftMaker:
1. TextMaker. Полноценный текстовый редактор, включающий тезарус, сноски, проверку орфографии, таблицы. Совместим с редактором Microsoft Word.
2. PlanMaker. Полноценная программа для работы с табличными данными. Совместима с табличным редактором Microsoft Excel [38].
Специальное программное обеспечение.
Программа MultiLab CE от фирмы Fourier System. Программа MultiLab CE является интерфейсом, посредством которого NOVA5000 обрабатывает экспериментальные данные, получаемые от встроенного регистратора данных.
Комплекс MultiLab предназначен для сбора, просмотра и анализа экспериментальных данных. Порты датчиков NOVA5000 позволяют подключать одновременно до восьми датчиков (всего Fourier System предлагает 52 вида датчиков) [38].
Возможности MultiLab CE [38]:
-
Сборка данных и отображение их в ходе эксперимента;
-
Выбор различных способов отображения данных – в виде графиков, таблиц, табло измерительных приборов;
-
Обработка и анализ данных с помощью Мастера анализа;
-
Импорт/экспорт данных текстового формата;
-
Ведение журнала экспериментов;
6. Просмотр видеозаписи предварительно записанных экспериментов [38].
2. TriLink. Состав системы:
- регистратор TriLink;
- датчики;
- инсталляционный компакт – диск с программным обеспечением;
- адаптер AC/DC.
3. Комплект датчиков [38]:
1) рН-метр
Диапазон измерений 0-14 единиц рН. Прибор находится в яйцеобразном пластиковом корпусе и снабжён электродом для измерения концентрации ионов Н+, а также системой температурной компенсации. Для осуществления температурной компенсации к регистратору следует подключить вместе с рН- метром датчик температуры.
Принцип действия рН-метра [38]:
Внутри рН-метра имеется две полуячейки. Одна из них содержит электрод сравнения с известной концентрацией ионов водорода Н+. Другая, расположенная на дне электрода, является Н+- чувствительной стеклянной мембраной (рН=-lg(Н+)). Разность потенциалов между двумя полуячейками представляет собой выходной сигнал электрода, который несёт информацию о рН анализируемого раствора. В корпусе прибора этот сигнал преобразуется с помощью усилителя и подстроечного конденсатора в напряжение в диапазоне 0-5 В, воспринимаемое аналого-цифровым преобразователем устройства регистрации и сбора данных и хранится в его памяти, а затем может быть передан на КПК или ПК [38].
Технические характеристики [38].
- Диапазон измерений 0-14 рН
- Рабочий диапазон температур 0-100 0С
- Погрешность измерения ± 2% ( во всём диапазоне измерения при условии температурной компенсации)
- Время достижения 95 % значения измеряемой величины 10 с
- Имеется регулировочный винт.
2) Датчик температуры. Датчик температуры предназначен для измерения температуры в водных и других химических растворах с погрешностью ±10С.
Принцип действия датчика температуры [38].
Датчик подключается кабелем непосредственно к регистратору данных. На другом конце кабеля находится чувствительный элемент. На датчик подаётся электрическое напряжение в 5 В, а его выходной сигнал, также в виде напряжения в диапазоне 0-5 В поступает на вход аналого-цифрового преобразователя устройства регистрации и сбора данных и хранится в его памяти, а затем может быть передан на КПК или ПК.
Технические характеристики.
- Диапазон измерений: (– 25) 0С – (+110) 0С.
- Разрешение 0,09 0С.
- Погрешность измерения ±1% от измеряемой величины
- Чувствительный элемент имеет стальной чехол, устойчивый к действию химических растворов [38].
4. Комплект методических пособий [38].
5.Программное обеспечение для сбора, анализа и обработки данных на КПК и ПК.
6. Цифровой микроскоп. Цифровой микроскоп приспособлен для работы в школьных условиях. Оптический микроскоп снабжен преобразователем визуальной информации в цифровую, обеспечивает возможность передачи изображения микрообъекта и микропроцесса в компьютер в реальном времени. Кроме того обеспечивается возможность его хранения, в том числе в форме цифровой видеозаписи, отображения на экране, распечатки, включения в презентацию [38].
Принцип действия цифровой лаборатории « Архимед»
-
Сбор данных от датчиков и их первичная обработка осуществляется с помощью измерительного Интерфейса и КПК Palm с использованием беспроводной связи Bluetooth.
-
После синхронизации КПК Palm и ПК данные можно просматривать на ПК, а затем производить дальнейшую обработку результатов.
-
Сбор данных сразу на ПК также возможен в целях проведения демонстрационного эксперимента с использованием видеовозможностей программы [38].
1.3.2 Анализ методических разработок и материалов по применению цифровой лаборатории «Архимед» на уроках
Занятия с использованием ученического и фронтального эксперимента являются одним из важных этапов образовательного процесса по химии. Во время проведения лабораторных исследований ученику предоставляется возможность наблюдать и исследовать на практике теоретические положения, пройденные в рамках аудиторных занятий. Наглядность дает возможность быстрее и глубже усваивать изучаемую тему, помогает разобраться в трудных для восприятия вопросах, повышает интерес к предмету. Такую наглядность хорошо обеспечивает использование «Цифровых лабораторий естественных наук». Основной целью создания цифровой лаборатории – является повышение эффективности учебного процесса, в частности, по химии за счет использования интерактивности и возможностей деятельностного подхода.
Установка в школе оборудования цифровой лаборатории позволяет:
-
перевести школьный практикум по химии на качественно новый уровень;
-
подготовить учащихся к самостоятельной творческой работе по химии;
-
осуществить приоритет деятельностного подхода к процессу обучения;
-
развить у учащихся широкий комплекс общих учебных и предметных умений;
-
овладеть способами деятельности, формирующими познавательную, информационную, коммуникативную компетенции.
Разработчики цифровой лаборатории предлагают в своих пособиях следующие опыты, для проведения на уроках, а также на факультативных занятиях по химии [38]:
-
Реакции нейтрализации (Взаимодействие гидроксида натрия с соляной кислотой)
-
Титрование в среде кислота/щёлочь
-
Окислительно-восстановительные реакции (Взаимодействие хлорида меди с алюминием)
-
Экзотермические реакции (Растворение гидроксида натрия в воде)
-
Эндотермические реакции (Растворение нитрата аммония в воде)
-
Закон Гесса. Аддитивность теплоты реакции
-
Теплота сгорания
-
Плавление и кристаллизация
9.Измерение калорийности продуктов питания [38]
10.Измерение кислотности различных напитков и бытовых моющих средств [40].
Недостатки цифровой лаборатории «Архимед»:
-
Согласно мнению компетентных авторов использование в цифровой лаборатории «Архимед» карманного компьютера на базе Palm OS® – не самый удачный выбор со стороны разработчиков. Компьютеры Palm® предназначены для использования в качестве электронной «записной книжки». Их удобно брать с собой в поездки, ходить с ними на работу и т.д. Они хотя и имеют функцию синхронизации с настольным ПК, не совместимы с ним по формату графических файлов, файловой системе и т.п. Компьютер, использующийся в цифровой лаборатории должен работать в тесном контакте с настольным ПК. Автор статьи считает, что для этой цели намного лучше подошел бы PocketPC® с операционной системой от Microsoft® [41].
-
Достаточно высокая погрешность измерений [41]
-
Не синхронизированное сохранение данных: программа Imagi Probe 2.0 сохраняет данные произвольно, а не в папки, выбираемые экспериментатором [41].
-
Неудобства при работе с температурным датчиком: согласно идее разработчиков цифровой лаборатории «Архимед» температурный датчик необходимо целиком помещать в вещество, температуру которого мы хотим измерить. При этом возникает вопрос об измерении температуры газа в термодинамическом процессе. Ведь датчик должен быть соединен проводом с «Измерительным Интерфейсом». При этом необходимо будет нарушить герметизацию сосуда, а это испортит весь эксперимент. Так что при проведении термодинамических процессов приходится ограничиваться показаниями температуры воздуха рядом с исследуемым сосудом [41].
Несмотря на выделенные недостатки следует отметить, что цифровая лаборатория «Архимед» – это достаточно успешно используемая сегодня в практике обучения по физике, химии, биологии, экологии и пр. лаборатория. Учителями создаётся и опробуется целый ряд методик применения КПК на уроках. Институт новых технологий проводит конкурсы подобных методических разработок [3]; материалы по применению цифровых лабораторий «Архимед» стали все чаще появляться в трудах образовательных конференций и конгрессов и в публикациях прессы [5, 10, 15] (причем размещенный в Интернете отчет о проведении семинара «Новые технологии в образовании» [15] сопровождается видеоматериалами, демонстрирующими учебную работу с КПК). Наконец, Московский Институт Открытого Образования (МИОО, http://www.mioo.ru) организовал в 2004 г. в числе методических мероприятий для учителей физики начальный и базовый курсы по использованию цифровых лабораторий «Архимед» в учебном процессе, тем самым выводя тематику применения КПК в отечественной системе образования на «официально признанный» уровень.
Глава 2. методы исследования
2.1 Настройка работы и регистрация данных с помощью цифровой лаборатории «Архимед»
1. Запуск MultiLab CE.
Для запуска программы MultiLab CE выберите команду Пуск → Программы → Наука → MultiLab CE.
2. Настройка датчиков.
-
В меню Регистратор выберите команду Настройка.
-
Далее откройте вкладку Датчики, флажок «Автоопределение» удалён, поэтому самостоятельно выбираем подключённые датчики в выпадающем меню полей: датчик температуры и датчик рН.
-
Откройте вкладку Частота и выберите частоту опроса: например, 1 замер в секунду. Затем откройте вкладку Замеры и в выпадающем меню выберите количество замеров: например, 500.
3. Запись данных.
Для начала записи данных в меню Регистратор выберите команду Пуск.
2.2 Анкетирование
Для реализации цели работы – исследования возможностей цифровой лаборатории «Архимед» для применения в урочной и внеурочной деятельности по химии нами был применен метод анкетирования. Анкетирование – метод сбора первичного материала в виде письменного опроса респондентов с целью сбора информации с помощью анкеты о состоянии тех или иных сторон воспитательного процесса, отношения к тем или другим явлениям [12].
Мы использовали сплошное (опрос всех представителей выборки) анкетирование. По числу респондентов и типов контактов респондентов анкетирование‚ проводимое нами следует отнести к групповому (несколько респондентов) и очному (в присутствии исследователя-анкетёра) соответственно. Вопросы, предложенные учащимся были составлены в закрытой (содержит полный набор возможных ответов) и открытой (ответ целиком и полностью формулирует сам респондент) форме (Приложение 7, 8). В закрытых вопросах респонденту предлагалось выбрать один или несколько из данных ему вариантов (количество выборов оговаривалось после формулировки вопроса). В наших анкетах для закрытых вопросов предъявлялись поливариантная (предусматривает список ответов) или шкальная (с ранжированием степени убеждения, отношения, впечатления и т.д.) форма вариантов ответов.
Глава 3. Результаты и их обсуждение
Проект «Информатизация системы образования» (2004-2009 гг.), подготавливаемый сегодня Министерством образования РФ, направлен на реализацию принятой Правительством РФ «Концепции модернизации российского образования».











