112105 (591029), страница 6

Файл №591029 112105 (Вивчення елементів стереометрії у курсі геометрії 9 класу) 6 страница112105 (591029) страница 62016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

При цьому вчителю слід продемонструвати різні моделі многогранників. Учні повинні вміти показувати їх грані, ребра, вершини.

Корисно нагадати учням, що з найпростішими з многогранників – призмами і пірамідами – вони зустрічалися раніше і вже ознайомлені з їх елементами та деякими властивостями.

Перший вид многогранників, який слід розглянути, – призми. Відомості, одержані про призму раніше, варто пригадати, повторити. Зокрема, призму учні мають розпізнавати як многогранник, у якого дві грані – довільні рівні многокутники з відповідно паралельними сторонами, а решта граней – паралелограми. Рівні многокутники називають основами призми, а паралелограми – бічними гранями.

Демонструючи моделі різних призм, учитель має звертати увагу учнів на те, що є призми, у яких бічні грані – прямокутники. У цьому випадку бічне ребро перпендикулярне до площини основи. Можна дати означення прямої призми: призму називають прямою, якщо її бічні ребра перпендикулярні до основ. В іншому випадку призма буде похилою. У 9-му класі досить обмежитися розглядом прямої призми.

Висотою прямої призми є довжина її бічного ребра. Відрізок, який сполучає дві вершини, що не належать одній грані, називають діагоналлю призми. Уявлення про діагональний переріз можна дістати, коли розрізати призму, виготовлену з пластичного матеріалу (пластиліну, воску, гуми), площиною, що проходить через бічні ребра призми.

Серед чотирикутних призм корисно виділити ті, основою яких є паралелограм. Такі призми називають паралелепіпедами. Отже, всі грані паралелепіпеда є паралелограмами. Якщо бічні ребра паралелепіпеда перпендикулярні до площини основи, то його називають прямим паралелепіпедом (в іншому випадку він буде похилим). У прямого паралелепіпеда дві грані (основи) – паралелограми, а решта граней – прямокутники. З класу прямих паралелепіпедів виділяють такі, основою яких є прямокутник. Це прямокутний паралелепіпед. Куб – це прямокутний паралелепіпед, у якого всі ребра рівні.

Важливо, щоб учні усвідомили, що і куб, і прямокутний паралелепіпед, і прямий паралелепіпед є різновидами призми. Доречним є поданий нижче ланцюг, який демонструє зв'язок між цими поняттями: призма – чотирикутна призма – паралелепіпед – прямий паралелепіпед – прямокутний паралелепіпед – куб.

Деякі відомості про елементи прямої призми (ребра, грані, основи) учням уже відомі. На основі планіметричних знань їх доцільно уточнити. Оскільки основи та бічні грані прямої призми є плоскими фігурами, то для них справедливі твердження планіметрії, зокрема: бічні ребра рівні між собою як протилежні сторони прямокутника. Після цього, використовуючи властивості паралельного проектування, вчимо учнів будувати зображення прямої призми. Це можна зробити в такій послідовності. Спочатку зображуємо одну з основ призми (це буде деякий плоский многокутник). Потім через вершини многокутника проводимо вертикальні паралельні прямі та відкладаємо на них рівні відрізки (вони будуть зображенням бічних ребер прямої призми). Послідовно сполучаючи кінці цих відрізків, одержуємо зображення другої основи призми.

Одночасно доцільно дати учням уявлення про зображення прямокутного паралелепіпеда, куба. За відповідної підготовки переважна більшість учнів правильно виконує ці зображення, досить легко за ними знаходить паралельні, взаємно перпендикулярні грані, ребра тощо.

Наступний вид многогранників, які пропонуємо розглянути, – піраміди. Уявлення про піраміду і деякі відомості про неї учні вже мають. Тому їх слід пригадати. Зокрема, піраміду вони розпізнають як многогранник, у якого одна грань – довільний многокутник, а решта граней – трикутники, що мають спільну вершину. Такий опис дає безпосереднє уявлення про форму всіх граней піраміди. Це значно полегшує сприймання форми піраміди, а отже, й дослідження її властивостей. При узагальненні поняття піраміди має бути сформульовано її означення.

Пірамідою називають многогранник, одна з граней якого – плоский многокутник, а решта граней – трикутники, що мають спільну вершину. Потрібно пригадати види пірамід залежно від многокутника, що є основою піраміди, показати їх на моделях та зображеннях.

Оскільки учні вже мають уявлення про перпендикулярність прямої та площини, то можна ввести поняття висоти піраміди як перпендикуляра, опущеного з вершини піраміди на площину основи. Точку перетину перпендикуляра та площини основи називають основою висоти піраміди. Висота утворює прямий кут з будь-якою прямою, що лежить у площині основи піраміди та проходить через основу висоти. Це твердження широко використовується під час розв'язування задач на обчислення елементів піраміди.

Зображати піраміду вчимо учнів у такій послідовності. Будуємо зображення основи піраміди у вигляді плоского многокутника. Позначаємо вершину піраміди і сполучаємо її відрізками з вершинами основи (ці відрізки будуть зображенням бічних ребер піраміди).

Під час побудови зображень призми, піраміди радимо використовувати відповідні демонстраційні комп'ютерні програми.

Варто на наочному рівні дати уявлення про діагональний переріз піраміди аналогічно до того, як це було зроблено у випадку призми.

Якщо піраміду перетнути площиною, паралельною площині основи, то одержимо два многогранники, один з них – піраміда, інший – зрізана піраміда. Слід наголосити, що зрізана піраміда – окремий вид многогранників.

Грані, що лежать у паралельних площинах, називають основами, решту граней називають бічними гранями. Основи – подібні многокутники, бічні грані – трапеції.

З найпростішими тілами обертання учні ознайомлені у 5–6-х класах. У 9-му класі пропонуємо розглядати лише прямий круговий циліндр, прямий круговий конус, зрізаний конус і кулю.

Учні вже мають уявлення про те, як дістати поверхню циліндра обертанням прямокутника навколо однієї з його сторін та поверхню конуса обертанням прямокутного трикутника навколо одного з катетів. Тому, як підсумок, на уроці демонструємо моделі циліндрів, конусів, серед яких є моделі похилих і некругових циліндрів і конусів. При цьому повідомляємо, що надалі розглядатимемо лише прямі кругові циліндри та прямі кругові конуси, які називатимемо відповідно циліндрами і конусами. Формулюємо означення циліндра як геометричного тіла, утвореного обертанням плоского прямокутника навколо однієї з його сторін. З'ясовуємо, що називають основами, твірними, радіусом, висотою, віссю циліндра. Учитель має зауважити, що у прямого циліндра твірні перпендикулярні до площин основ.

Побудова зображень геометричних тіл – ефективний спосіб розвитку просторових уявлень. Побудова зображень циліндра, конуса, кулі не становить для учнів значних труднощів.

Після ознайомлення з паралельністю площин учні досить легко помічають, що основи циліндра знаходяться в паралельних площинах. Якщо каркасну модель циліндра розмістити в полі зору учнів так, що його основи матимуть вигляд еліпсів, а твірні та висота циліндра будуть вертикальними, то зрозумілим стає зображення циліндра. За допомогою шаблона будуємо два рівних еліпси – основи циліндра, малі осі яких лежать на одній вертикальній прямій. Спільні вертикальні дотичні до обох еліпсів будуть контурними твірними зображуваного циліндра. Для організації роботи учнів треба забезпечити достатньою кількістю шаблонів еліпса різних розмірів.

Відомості, одержані учнями про конус раніше, варто пригадати, повторити.

Прямий круговий конус означуємо як геометричне тіло, утворене обертанням плоского прямокутного трикутника навколо одного з катетів. Пояснюємо учням побудову зображення конуса. Основою конуса є круг, який зображується у вигляді довільного еліпса, мала вісь якого лежить на вертикальній прямій. На цій прямій, яка проходить через центр еліпса, позначимо точку – вершину конуса, через неї проведемо дві дотичні до еліпса – контурні твірні. Одержана фігура і буде зображенням конуса на площині.

Даємо уявлення про зрізаний конус. Перетнемо конус площиною, паралельною його основі. Вона відтинає від нього менший конус. Частину, що залишилася, називають зрізаним конусом. Демонструємо учням відповідні моделі.

Слід звернути увагу учнів на практичне значення конічних форм. З конусом, і особливо зрізаним, дуже часто доводиться мати справу на виробництві, зокрема в токарній справі.

Уявлення про осьовий переріз циліндра, конуса учні одержують у процесі ознайомлення з тілами обертання. Уже під час проведення досліду, який демонструє утворення циліндра, конуса, звертаємо увагу на те, що є їх осьовим перерізом. Під час побудови зображень цих тіл даємо уявлення також про зображення осьового перерізу.

З кулею учні ознайомлені раніше. У 9-му класі доцільно розглянути кулю як тіло, утворене обертанням півкруга навколо діаметра. Перед формулюванням означення кулі пропонуємо учням пригадати означення кола і круга, відомі з курсу планіметрії. Тоді так само, як у випадку з циліндром і конусом, формулюємо означення кулі.

Куля – це геометричне тіло, утворене обертанням півкруга навколо діаметра як осі. Центр півкруга буде центром кулі. Радіус півкруга водночас є і радіусом кулі. Поверхню кулі називають сферою. Доцільно зауважити, що сферу можна дістати обертанням кола навколо діаметра як осі.

Переріз кулі площиною є круг. Цей факт буде доведено в систематичному курсі стереометрії.

Контуром кулі є коло. Якщо, будуючи зображення кулі, зобразити тільки її контур, то таке зображення не буде наочним. Тому рисунок потрібно доповнити деякими лініями і точками, які зображають окремі елементи кулі. Коло одного з великих кругів кулі назвемо екватором; діаметр, перпендикулярний до площини екватора, – віссю; його кінці – полюсами кулі. Якщо зображення контуру кулі доповнити зображеннями екватора і полюсів, рисунок стане об'ємним. Зображенням екватора кулі буде довільний еліпс, центр якого є зображенням центра кулі. Нехай такий еліпс вибрано. Тоді пропонуємо таку послідовність побудови зображення кулі:

  1. проводимо вертикальну вісь кулі, вибираємо на ній точку, що зображає центр кулі;

  2. сумістивши центр еліпса з вибраною точкою, а малу вісь еліпса з вертикальною віссю кулі, зображаємо екватор кулі;

  3. радіусом, що дорівнює великій півосі еліпса, будуємо коло з центром у точці, що є зображенням центра кулі; це коло зображає контур кулі;

  4. для зображення полюсів проводимо дотичну до еліпса в одному з кінців його малої осі; відрізок цієї дотичної між точкою дотику і точкою перетину її з контуром кулі відкладаємо на осі кулі по обидві сторони від центра кулі. Одержані точки – зображення полюсів кулі.

За аналогією до дотичної до кола дається уявлення про дотичну площину до кулі.

Учні 9-го класу готові до оволодіння вмінням виконувати такі зображення. Більшість з них правильно зображає прямокутний паралелепіпед, куб, піраміду, циліндр, конус, кулю, хоча поширеною помилкою є неправильне зображення невидимих ліній суцільною лінією.

Під час вивчення питань, пов'язаних із зображенням геометричних тіл, ефективним засобом є комп'ютер. За його допомогою легко виділити най-значиміше, продемонструвати побудову зображення у відповідній послідовності у динаміці.

З обчисленням об'ємів геометричних тіл учні ознайомлені в курсі математики 5–6-х класів. Надалі слід звернути увагу на те, що кожне геометричне тіло має певний об'єм, виражений додатним числом. Обчислюючи об'єми, треба брати до уваги такі властивості.

  1. Рівні тіла мають рівні об'єми.

  2. Якщо тіло складається з частин, що не мають самоперетинів, то його об'єм дорівнює сумі об'ємів частин, з яких воно складається.

  3. Одиницею об'єму вважають об'єм куба, ребро якого дорівнює одиниці довжини.

Зауважимо, що зазначені властивості об'ємів аналогічні до властивостей площ.

Оскільки формула для обчислення об'єму прямокутного паралелепіпеда відома учням ще з 5-го класу, то її необхідно пригадати:

,

де – виміри паралелепіпеда.

Якщо добуток розглядати як площу основи паралелепіпеда, – його висоту, то можна сказати так: об'єм прямокутного паралелепіпеда дорівнює добутку площі його основи на висоту.

Після цього дається формула для обчислення об'єму прямої призми:

,

де – площа основи призми, – її висота.

Об'єм циліндра, як і об'єм призми, також дорівнює добутку площі його основи на висоту.

Варто пригадати, що основою циліндра є круг. Якщо його радіус позначити через , а висоту циліндра через , то його об'єм дорівнює:

.

Характеристики

Тип файла
Документ
Размер
30,14 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее