25316-1 (590958), страница 3
Текст из файла (страница 3)
В настоящее время на гидротехнических сооружениях получают распространение и крановые двигатели серий МТКВ МТВ с изоляцией класса В, допускающей увеличение номинальной мощности двигателя при прежних габаритных размерах.
Из - за отсутствия крановых двигателей необходимой мощности стали применяться двигатели общепромышленного назначения. Однако эти двигатели менее надежны в эксплуатации, хуже работают в условиях гидротехнических сооружений, обладают меньшей перегрузочной способностью.
Режим работы двигателей гидротехнических сооружений, как правило, кратковременный с ярко выраженной цикличностью работы. Продолжительность цикла в зависимости от вида сооружения и характера работы составляет 30 -60 минут. Продолжительность работы двигателей в цикле при этом колеблется от одной до 6 - 8 минут.
Электрические приводы тормозов. Большинство механизмов гидротехнических сооружений снабжают тормозами закрытого типа, как правило, колодочными. Тормоза служат для удержания подъемноопускных устройств в поднятом положении, а поворотных в строго фиксированном положении. Кроме того, с помощью тормоза можно сократить тормозной путь
- выбег механизма. Особенно высокие требования предъявляются к тормоза многодвигателтельных систем, где необходима одинаковая эффективность действия тормозов для сохранения синхронизации и последовательности движения элементов.
Для приведения в действие механических тормозов применяются длинноходовые электромагниты серии МО и электрогидравлические толкатели серии ЭГП.
1.4.б. Электрические аппараты системы управления. Эта группа объединяет аппараты коммутации и защиты, аппараты технологической последовательности и блокировок, контроля и сигнализации. Кроме управления основными механизмами и процессами, специальные системы этой группы аппаратов обеспечивают информацию о состоянии наиболее ответственных элементов и режимах работы и осуществляют регулирование движения судов.
Коммутационные аппараты. Для коммутации силовых цепей гидротех-
нических сооружений применяются в основном электромагнитные контакторы серии КТ. Бесконтактные ( полупроводниковые ) контакторы тока используют лишь в опытном порядке с тиристорными станциями управления.
Аппараты защиты. На шлюзах применяются максимальная токовая и минимальная защита. Для максимальной токовой защиты двигателей ворот и затворов обычно используют электромагнитные или индукционные реле максимального тока серии РЭ и ИТ, Для защиты от перегрузок электротепловые реле ТР, для минимальной защиты - реле напряжения.
Реле промежуточное используется для подготовки цепей управления к заданным операциям ( например, цикловому или раздельному управлению ). Кроме того, промежуточные реле в некоторых случаях позволяют сократить число контактов, включаемых в цепь управления. Например, вместо того чтобы включить кнопку " Стоп " всех постов управления в цепь управления, можно включить их цепь катушки промежуточного реле. При нажатии любой из этих кнопок размыкаются контакты этих реле в цепи управления и происходит остановка привода. В качестве промежуточных реле широкое применение находят реле серии РП.
Реле времени служат для управления контакторами ускорения, а также в других случаях, когда необходимо, чтобы между двумя операциями был определенный промежуток времени. Для этих целей на водных путях в основном используются электромеханические реле с приводом на переменном токе и электромагнитные реле времени постоянного тока.
Кнопки и ключи управления применяются общего назначения, рассчитанные на работу в условиях повышенной влажности.
Путевые выключатели. На шлюзах черезвычайно распространены путевые выключатели. Они служат для отключения двигателей при достижении затворами конечных и предельных положений, а также для блокировок. Различают путевые выключатели двух типов: блок - аппараты и конечные выключатели. Первые, по своему устройству подобные командоконтроллерам, являются средством управления и блокировок в функции пути, а вторые, обычно рычажного типа, устанавливаются для срабатывания в конце пути.
На гидротехнических сооружениях находят применение и бесконтактные выключатели, работа которых основана на изменении их индуктивного или емкостного сопротивления при перемещении подвижного якоря. Такие выключатели малогабаритны, герметичны, с успехом работают в агрессивной среде, и в частности в подводных частях сооружений.
Панели и пульты. Аппаратуру управления и защиты располагают, как правило, на контакторных панелях, собранных из прямоугольных изоляционных плит и укрепленных на угловых стойках. Коммутационную аппаратуру, реле управления и защиты устанавливают на лицевой стороне с выводом защиты для монтажа с обратной стороны панелей, где находятся измерительные трансформаторы и пускорегулирующие резисторы. Размещение чувствительных реле на контактных панелях в непосредственной близости от мощных контакторов имеет существенный недостаток, заключающийся в ложных срабатываниях реле от вибрации, вызываемой включением и выключением контакторов. Поэтому на современных шлюзах чувствительную аппаратуру управления располагают на отдельных панелях, называемых панелями автоматики. Командоаппараты и приборы технологического контроля и сигнализации устанавливают в полном объеме на центральном или в сокращенном на местном пультах управления. Все приборы и устройства на центральном пульте управления размещают в соответствии с мнемонической схемой объекта. Центральный пульт находится в отдельном помещении, чтобы обеспечить оператору хорошую видимость объекта. Местный пульт обычно устанавливают непосредственно около управляемого механизма и снабжают запирающейся крышкой.
1.4.в Оперативная сигнализация. К числу основных устройств сигнализации и контроля относятся устройства производственной ( оперативной, поисковой и аварийной ) сигнализаций. Среди них наиболее заметное место занимает оперативная сигнализация.
Для успешной работы оператор шлюза должен иметь возможность в любое время установить, в каком положении находятся ворота и затвор ( насколько они открыты или закрыты ), а также каковы уровни воды в камере и обоих бьефах. Для этой цели применяется оперативная указательная ( индикаторная ) сигнализация. На (рисунке 6,а и б) изображены показатели положения подъемно - опускных и двустворчатых ворот. Основу указателей составляют сельсины, образующие систему синхронной связи (см. п. 30 ).
С приводом ворот связан ротор сельсина - датчика, который поворачивается при их перемещении. При этом поворачивается и ротор сельсина приемника, электрически соединенного с сельсином - датчиком. С сельсином - приемником, находящемся на центральном пульте управления, связан указатель, который и отражает положение ворот.
Указатель уровня воды в камере работает следующим образом. На одной из голов шлюза устанавливают колодец, сообщающийся с камерой, в который помещают поплавок, закрепленный на тросе и уравновешенный противовесом. При изменении уровня воды в камере поплавок поднимается или опускается, отчего начинает вращаются ролик, охватываемый тросом. Это вращение передается через редуктор сельсину - датчику и через сельсин - приемник отражается на экране стрелочного, ленточного или цифрового указателя. Аналогично работают и указатели уровня воды в бьефах.
Как известно, дифференциальный сельсин - приемник позволяет определить угол рассогласования между роторами двух сельсинов - датчиков. Этот принцып положен в основу работы указателей ( индикаторов ) разности уровней воды в камере, верхнем или нижнем бьефах и указателей перекоса затвора.
Обмотка статора дифференциального сельсина - указателя разности уровней получает питание от ротора сельсина - датчика, угол поворота которого зависит от уровня воды в бьефе ( верхнем или нижнем ), а обмотка ротора включена на зажимы ротора датчика, угол поворота которого зависит от уровня воды в камере. Указатель разности уровней воды необходим для управления воротами шлюза.
Указатель перекоса предусматривают, если затвор поднимается и опускается с помощью двух механически не связанных двигателей, установленных на противоположных устоях камеры. Даже при наличие " электрического вала " в таких случаях возможно появление перекоса. Перекос затвора весьма опасен из - за увеличения напряжений в нем и возможности его заклинивания, а также перегрузок электрических двигателей.
Статор дифференциального сельсина - указателя перекоса получает питание от ротора сельсина - датчика положения левой стороны затвора, а его ротор подключен к ротору сельсина - датчика положения правой стороны затвора. Если перекос превышает заданное максимальное значение, цепь управления данным приводом автоматически разрывается.
Рассматриваемые приборы выполняют не только функции сигнализации, но и контроля. Они имеют контакты, замкнутые при угле рассогласования, не превышающем заранее заданного значения, и разомкнутые, если этот угол больше допустимого. Контакты указателей включаются в цепь соответствующих реле, а контакты последних - в цепь управления. На (рисунке 6) приведена принципиальная схема оперативной указательной сигнализации для одного из шлюзов.
На схеме приняты следующие обозначения: ВСВ - датчик уровня воды верхнего бьефа; ВС11 - датчик положения ворот верхней головы; ВС12
- то же, правой стороны; ВЕВ2 - приемник разности уровней воды между верхним бьефом и камерой; ВЕВ - приемник абсолютного уровня воды верхнего бьефа; ВЕ1 - приемник положения ворот верхней головы; ВЕР1
- приемник перекоса ворот верхней головы; ВС2 - датчик уровня воды в камере; ВСН - датчик уровня воды в нижнем бьефе; ВС31 - датчик положения левой створки ворот нижней головы; ВС32 - датчик положения правой створки ворот нижней головы; ВС41 - датчик положения левого затвора галерей; ВС42 - то же правого затвора галерей; ВЕН2 - приемник разности уровней воды между камерой и нижним бьефом; ВЕН - приемник абсолютного уровня воды в нижнем бьефе; ВЕ31 - приемник положения левой створки ворот нижней головы; ВЕ32 - приемник положения правой створки ворот нижней головы; ВЕ41 - приемник положения затвора левой галереи; ВЕ42 - приемник положения затвора правой галереи; KV2 - реле напряжения цепи питания сельсинов; КВ2 - реле разностей уровней воды межу верхним бьефом и камерой; КН2 - реле разностей уровней воды между камерой и нижним бьефом; KV1 - реле перекоса.
Как видно из схемы, в камере, в верхнем и нижнем бьефах, установлено три датчика: ВС2 - датчик уровня воды в камере; ВСВ - датчик уровня воды в верхнем бьефе; ВСН - датчик уровня воды в нижнем бьефе, каждый из которых питает ротор обычного сельсина - указателя уровня. Кроме того, каждый из этих датчиков питает одну из обмоток дифференциальных сельсинов, контролирующих разность уровней. Для ворот верхней головы на схеме показано три датчика. Один из них - ВС1 - питает ротор приемника, указывающего положение затвора, два других - ВС11 и ВС12, связанных с левой и правой сторонами ворот, - питают дифференциальный сельсин - указатель перекоса. Что касается двустворчатых ворот и затвора водопроводных галерей, то на каждые створку и затвор установлено по одному датчику, питающему ротор приемника, который указывает положение той или иной створки или затвора.
Указатели разности уровней и перекоса снабжены контактной системой. Контакты указателей включены последовательно с катушками промежуточных реле разности уровней и перекоса.
Контакты SB2 и SH2 замкнуты при одинаковых уровнях, при неравных разомкнуты. Контакты SP1 замкнуты при перекосе, не превышающем заданное значение, при большем перекосе они разомкнуты.
Оперативная сигнализация у различных шлюзов устроена неодинаково. В качестве примера рассмотрим принципиальную схему оперативной ламповой сигнализации (рисунок 8), в которой КВ1 - контакт реле мигающего сигнала; SQ1 - SQ3, SQ6 и SQ7 - контакты путевого выключателя, замкнутые при открытых затворах ( воротах ); SQ4, SQ5, SQ8, SQ9 - то же, замкнутые при закрытых воротах; KV - контакт реле блокировки ворот, замкнутый при закрытых воротах; К12 и К32 - контакты реле разности уровней воды между камерой и верхним и нижнем бьефами, замкнутые при уравненных уровнях. При открытом затворе горит зеленая лампочка Н3, при закрытом - красная НК, при движении затвора лампа мигает. Показанные на схеме замыкающие и размыкающие контакты являются вспомогательными контактами оперативных аппаратов управления операциями открытия О и закрытия Z затворов ( ворот ).
Пусть, например, ворота верхней и нижней голов шлюза закрыты, затворы водопроводных галерей открыты и уровень в камере выровнен с уровнем нижнего бьефа. В этом случае будут разомкнуты контакты путевого выключателя SQ1, SQ4, SQ5 - SQ7 и замкнуты контакты SQ2, SQ3, SQ8, SQ9. Будут замкнуты замыкающие контакты KV1 и К12 и закрыты все показанные на схеме размыкающие контакты. В результате этого будут гореть красные лампы НК3, НК4, НК16 - НК18 и зеленые Н36 - Н39.
Пусть получают питание катушки оперативных контакторов КО1 и КО2, включающие двигатели приводов двустворчатых ворот в сторону открытия. Створки ворот придут в движение. При этом разомкнутся размыкающие контакты КО1 и КО2 и замкнутся замыкающие контакты КО1 и КО2. зеленые лампы НЗ13 - НЗ15 загорятся мигающим светом. Контакты путевого выключателя SQ8 и SQ9 разомкнутся, и красные лампы НК16- НК18 погаснут. Когда створки полностью откроются, потеряют питание катушки контакторов КО1 и КО2, откроются замыкающие контакты КО1 и КО2 и закроются размыкающие вспомогательные контакты КО1 и КО2. Поскольку при открытых створках контакты SQ6 и SQ7 замкнуты, зеленые лампы горят постоянным светом.
Ответной частью оперативной сигнализации является та часть, которая относится к изменению уровней воды и перепадов. На многих шлюзах эти устройства объединяют в общий водокомандный или водомерный прибор. В качестве примера приведена схема комбинированных водомерных приборов, которые измеряют уровни воды в камерах и бьефах, показывают их отметку и значение напоров на верхние и нижние ворота.
Комплект водомерного прибора состоит из трех пар сельсинов ВС ( датчик ) и ВЕ ( приемник ). Они работают на исполнительные двигатели М через дифференциальную механическую передачу, приводящую в движение счетное цифровое устройство и вспомогательные контакты. Функциональная схема одной пары сельсинов прибора приведена на (рисунке 9). Прибор работает по принципу фазового управления, при ко-
тором у исполнительного двигателя нагрузки по току независимо от