95194 (590172), страница 2
Текст из файла (страница 2)
Другим механизмом запуска процесса свертывания крови является внутренний путь. Он связан с контактом крови с субэндотелием (коллагеном), а также с разрушенными эритроцитами (при внутрисосудистом гемолизе), а в пробирке – контактом со стеклом. При этом механизме последовательно активируются в комплексах «фактор XII (фактор Хагемана) + прекалликреин + фактор XI», а затем «фактор XI + фактор IX + фактор VIII», после чего процесс, как и в предыдущем механизме, замыкается на активации фактора X с образованием протромбиназного комплекса. Внутренний механизм первого этапа свертывания протекает намного медленнее, чем внешний [42]. Он определяется общим временем свертывания крови, временем рекальцификации цитратной плазмы и активированным парциальным тромбопластиновым временем (АПТВ).
В отличие от пробирочных опытов в организме оба указанных выше механизма свертывания крови не строго изолированы друг от друга, а взаимодействуют между собой.
Второй этап свертывания крови заключается в активации протромбиназным комплексом (т. е. фактором Ха в комплексе с фактором Va + Ca2+ + фосфолипидная матрица) протромбина, который, расщепляясь, превращается в активный тромбин (фактор IIa). Таким образом, второй этап процесса свертывания завершается образованием активного тромбина.
На третьем этапе процесса этот активный тромбин отщепляет от α- и β -цепей фибриногена два пептида А и два пептида В, в результате чего в плазме крови повышается содержание этих пептидов и одновременно – мономеров фибрина (МФ) с четырьмя свободными связями. Вслед за этим начинается процесс полимеризации МФ – образование их димеров, затем тетрамеров и, в конечном счете – волокон и сгустков фибрина [50].
1.1.2 Противосвертывающие механизмы и система фибринолиза
В свертывающей системе крови действуют силы как аутокатализа, или самоускорения, так и самоторможения, в силу чего многие факторы свертывания крови и их фрагменты приобретают свойства антикоагулянтов. В частности, сам фибрин и продукты расщепления фибриногена плазмином обладают противосвертывающим действием. Однако наиболее важны для поддержания крови в жидком состоянии так называемые первичные, т. е. самостоятельно синтезируемые и постоянно находящиеся в крови, антикоагулянты (табл. 2). Помимо перечисленных в табл. 2 важнейших физиологических антикоагулянтов, в патологических условиях в крови могут появляться в высоком титре иммунные ингибиторы факторов свертывания крови - антитела к факторам VIII, IX и другим, а также к фосфолипидным матрицам, на которых взаимодействуют и активируются факторы свертывания крови (антифоcфолипидный синдром) [42].
Таблица 2 Основные первичные антикоагулянты
Наименование | Механизмы действия |
Ингибитор внешнего пути свертывания крови (TFPI) | Синтезируемый в эндотелии белок, инактивирующий комплекс «ТФ+фактор Vila+фактор Ха» |
Тромбомодулин | Гликопротеин мембраны эндотелиальной клетки, связывающий и инактивирующий тромбин, в комплексе с которым тромбин сохраняет способность активировать протеин С |
«Контактные ингибиторы» (фосфолипидный, плацентарный) | Подавляют пусковой механизм внутреннего пути свертывания крови (комплекс факторов XIIa-XIa и калликреина) |
Антитромбин III (AT III) | Прогрессивно действующий ингибитор тромбина, фактора Ха и в меньшей степени других протеаз, участвующих в свертывании крови |
Гепарин и другие кислые мукополисахариды | В комплексе с AT III действуют как мощные антикоагулянты |
Протеин С | Синтезируемый гепатоцитами витамин К-зависимый ингибитор факторов Villa и Va, эндогенный активатор плазминогена. Активируется тромбином и комплексом «тромбин+тромбомодулин» |
Фибринолитическая (плазминовая) система, как и система свертывания крови, активируется как по внешнему, так и по внутреннему механизму.
Наиболее мощным внешним активатором этой системы является продуцируемый в эндотелии, а также в ряде тканей тканевый плазминогеновый активатор (ТПА), на долю которого приходится около 70% всего активаторного эффекта. Еще около 15% внешнего механизма активации приходится на фермент урокиназу, который вырабатывается в почках и в наибольшей своей части выделяется с мочой, а в кровь попадает в значительно меньшем количестве. На остальные активаторы, поступающие в кровь извне, приходится лишь небольшая часть указанной активности, но в патологических условиях она может быть резко усилена тканевыми и лейкоцитарными протеазами и другими факторами.
Внутренний механизм активации фибринолиза осуществляется в основном комплексом «фактор XIIа+калликреин+высокомолекулярный кининоген» (так называемый XIIа - калликреин зависимый фибринолиз), активированными протеинами C+S.
Механизмы активации фибринолиза замыкаются на плазминогене, который трансформируется в активный фермент – плазмин (в прошлом он обозначался как фибринолизин) [25].
Плазминоген и его активаторы фиксируются в основном на сгустках фибрина в тромбах, в связи с чем лизис фибрина преобладает над лизисом растворенного в плазме фибриногена. Кроме того, действию плазмина на фибриноген препятствует содержащийся в плазме мощный ингибитор этого фермента – а2-антиплазмин. Однако при чрезвычайно сильной активации плазминогена происходит истощение а2-антиплазмина, и в плазме крови обнаруживается большое количество продуктов как фибринолиза, так и фибриногенолиза. Эти продукты не идентичны друг другу. В результате расщепления фибриногена в плазме нарастает количество конечного продукта этого процесса - фрагмента D, тогда как при расщеплении фибрина увеличивается концентрация фрагментов D-D (димера) и D-E-D. Нарастание содержания в крови D-димера является важным маркером массивного тромбоза кровеносных сосудов, тромбоэмболии, диссеминированного внутрисосудистого свертывания крови [20, 25, 45].
1.1.3 Нарушения системы гемостаза у онкологических больных в раннем послеоперационном периоде
У онкологических больных система гемостаза реализуется преимущественно по внешнему механизму процесса свертывания крови, т.е. путем воздействия тканевого тромбопластина и так называемых раковых прокоагулянтов на факторы VII и Х. Многие виды опухолевых клеток продуцируют и выделяют в кровь большое количество ТФ, а также особых “раковых прокоагулянтов”, обладающих способностью активировать как фактор VII, так и фактор Х [8].
После операции значительно повышена интенсивность агрегации тромбоцитов. Эти изменения можно объяснить появлением тромбина и АДФ в результате прокоагулянтной активности опухолевых клеток и взаимодействием сиалопротеина мембран опухолевых клеток с тромбоцитами [8, 19, 26, 35].
В первую фазу свертывания крови и активации коагуляционного каскада возрастает скорость образования тромбопластина и тромбина, быстрее достигается максимальная активность этих факторов свертывания; во вторую фазу повышается активность факторов протромбиназного комплекса (II, VII, IX, X). Эти изменения индуцированы поступлением в кровоток высокоактивных прокоагулянтных субстанций из опухолевой ткани, наиболее важной из которых является серинопротеаза, которая независимо от тканевого фактора и фактора VIIа ведет к образованию фактора Ха. Отмечается увеличение концентрации фибриногена, что может быть связано с повышенным расходом фибрина на построение стромы опухоли и потреблением его в процессе внутрисосудистого свертывания крови [35].
Увеличивается количество РФМК, свидетельствуя о наличие в плазме комплексов фибрин-мономеров с продуктами деградации фибриногена. Таким образом оперативное вмешательство у онкологических больных вызывает развитие подострого ДВС-синдрома. При этом повышается агрегация тромбоцитов, потребление фибриногена и антитромбина III, увеличивается концентрация РФМК [43].
Гемокоагулирующие свойства легких
Легочная паренхима человека и животных богата тромбопластином. Т. Аструп и Пермин первыми обнаружили в легких большое количество активаторов фибринолиза. Легочная ткань содержит плазмин, плазминоген, активаторы и проактиваторы плазминогена, а также антиплазмин [44].
Гемокоагулирующие и фибринолитические агенты легких не только участвуют в локальном гемостазе, но и выделяются в кровь. В кровь поступают тромбопластин, естественные антикоагулянты, активаторы и ингибиторы фибринолиза.
Освобождение гемокоагулирующих и фибринолитических веществ из легких позволяет считать их одним из органов – эффекторов (наряду с сосудами, почками, желудочно-кишечных трактов), регулирующих свертывание крови и ее фибринолитическую активность. В стрессовых ситуациях и операциях на легких эти соединения выделяются в кровоток в более значительном количестве, нежели в норме, приводя к нарушениям гемокоагуляции. Гиперкоагулемия и внутрисосудистое свертывание крови при операциях на легких связаны с их тромбопластической активностью [44].
Гемокоагулирующие свойства предстательной железы, почек и мочевыводящих путей
Тромбогеморрагические осложнения при урологических операциях возникают возникают особенно часто. Причину этих осложнений связывают с поступлением в кровоток из оперируемого органа гемокоагулирующих и фибринолитических агентов [44].
Предстательная железа и ее аденома содержит активные тромбопластин, естественные антикоагулянты, антигепариновый фактор, фибриназу, ферменты, подобные плазменным факторам V и VII, активаторы и ингибиторы фибринолиза, вещества активно участвующие в сосудисто-тромбоцитарном гемостазе. При попадании в кровоток тканевой жидкости предстательной железы или ее аденомы доминирует действие тромбопластических и антифибринолитических соединений, а это способно привести к интравазальной гемокоагуляции и торможению фибринолиза.
При урологических операциях на свертывание крови могут влиять и гемокоагулирующие вещества мочевыводящих путей, которые травмируются при операционном вмешательстве. Экстракты мочевыводящих путей содержат антикоагулянты, тканевую фибриназу, усиливающую стабилизацию фибрина. Таким образом, мочевыводящие пути содержат весьма активный тромбопластин, фибриназу, естественные антикоагулянты, активаторы и ингибиторы фибринолиза.
Почки относятся к органам с высокой тромбопластической и фибринолитической активностью. В почках синтезируются и освобождаются в кровь и мочу тромбопластин, антигепариновые субстанции, антикоагулянты, вещества подобные плазменным факторам V и ХIII. При попадании мочи на раневую поверхность при аденомэктомии или при операциях на мочевом пузыре она будет стимулировать локальное свертывание и тормозить локальный фибринолиз, создавая надежный гемостаз в операционном поле [44].
Гемокоагулирующие свойства желудочно-кишечного тракта и поджелудочной железы
Местные и генерализованные тромбогеморрагические нарушения при заболеваниях пищеварительной системы встречаются весьма часто [44].
При онкологических заболеваниях гемокоагулирующие свойства стенок ЖКТ меняются. Опухоли обладают большей тромбопластической и антигепариновой активностью, чем не пораженные стенки. Экстракты опухоли желудка укорачивают тромбиновое время плазмы. Вытяжки же здорового желудка обладают высокой антикоагулянтной активностью. Опухоли желудка содержат меньше фибриназы, чем интактные участки. Фибринолитическая активность опухоли снижена вследствие увеличения в них ингибиторов фибринолиза. Фибринолитические компоненты опухолей содержат проактиватор и активатор плазминогена, плазминоген, большое количество ингибиторов. Обнаружено уменьшение содержания антигепариновых и фибрин-стабилизирующих соединений, почти полное отсутствие гепарина, комплексные соединения гепарина (с фибриногеном, адреналином, плазмином, серотонином). Усиление антигепариновой активности в опухоли ведет к связыванию гепарина, что благоприятствует действию активного тромбопластина опухолевой ткани и приводит к образованию в ней фибрина, защищающего клетки опухоли от канцеролитических агентов крови. В крови, оттекающей от пораженного раком желудка, усилена тромбопластическая и угнетена фибринолитическая активность, что объясняется выделением из опухоли ингибиторов фибринолиза и угнетением активаторов плазминогена [44].
Ткани поджелудочной железы обладают тромбопластической активностью, проявляют антифибринолитическое действие. При операциях на поджелудочной железе трипсин и гемокоагулирующие субстанции проникают в кровоток. Трипсин обладает многосторонним действием на свертывание крови: он усиливает агрегацию тромбоцитов, активирует плазменные факторы ХII, ХI, Х, VII, II, ХIII, запуская свертывание крови как по внешнему, так и по внутреннему пути. Он лизирует фибриноген и фибрин с образованием продуктов их деградации. Таким образом, трипсин усиливает течение тромбогеморрагического синдрома [44].
1.2 Пептидергическая система
1.2.1 Механизм образования активных форм пептидов
В регуляции гемостаза принимают участие пептиды. Это природные или синтетические соединения, молекулы которых построены из остатков аминокислот, соединенных между собой пептидными (амидными) связями C(O)–NH. Могут содержать в молекуле также неаминокислотную компоненту (напр., остаток углевода). Большинство биологически активных пептидов синтезируется в составе высокомолекулярных неактивных предшественников – препробелков, которые подвергаются посттрансляционной модификации различного типа [18]. Секретируемые белково-пептидные продукты синтезируются на мембраносвязанных рибосомах ЭПР. Благодаря наличию на N-конце препроформы нейропептида набора гидрофобных аминокислот, так называемой сигнальной последовательности, предшественник транслоцируется через мембрану ЭПР [1]. Внутри ЭПР сигнальная последовательность отщепляется от полипептидной цепи сигнальной пептидазой. Далее процессинг осуществляется в ходе передвижения молекул пропептидов по гранулярному ЭПР, комплексу Гольджи и в секреторных везикулах [38, 51, 62, 72].