86397 (589976), страница 2
Текст из файла (страница 2)
(1.37)
(1.38)
Теорема 1.3 Система (1.1) має приватні інтеграли виду (1.3) і (1.13) з коефіцієнтами, певними формулами (1.32) - (1.38), за умови, що коефіцієнти системи (1.1) виражаються через параметри по формулах (1.28) - (1.31).
Нехай
(1.39)
З першого рівняння системи (1.39) знайдемо
,
.
Підставляючи в друге рівняння системи (1.39), одержимо рівність:
(1.40)
Оскільки , те розглянемо два випадки:
, тоді
.
Зі співвідношень (1.25) при умовах (1.39) і (1.40) одержуємо, що коефіцієнти системи (1.1) визначаються наступними формулами:
,
,
(1.41)
,
,
,
,
(1.42)
Рівності (1.9) - (1.11), (1.19) - (1.22) за умови, що мають місце формули (1.41) - (1.42), дадуть наступні вираження для коефіцієнтів інтегралів (1.3) і (1.13):
1 (1.43),2
(1.44)
3 (1.45),
(1.46)
(=0 (1.47)
(1.48),
(1.49)
Теорема 1.4 Система (1.1) має приватні інтеграли виду (1.3) і (1.13) з коефіцієнтами, певними формулами (1.43) - (1.49), за умови, що коефіцієнти системи (1.1) виражаються через параметри по формулах (1.41) - (1.42).
б) (1.50),
(1.51)
З (1.50) знайдемо :
Зі співвідношень (1.25) при умовах (1.39) і (1.50) - (1.51) одержуємо, що коефіцієнти системи (1.1) визначаються наступними формулами:
,
- будь-яке число,
(1.52)
,
,
,
,
(1.53)
Рівності (1.9) - (1.11) і (1.19) - (1.22) за умови, що мають місце формули (1.52) - (1.53), дадуть наступні вираження для коефіцієнтів інтегралів (1.3) і (1.13):
(1=0 (1.54), 2 (1.55)
(1.56)
(1.57)
(1.58)
(1.59)
(1.60)
Теорема 1.5 Система (1.1) має приватні інтеграли виду (1.3) і (1.13) з коефіцієнтами, певними формулами (1.54) - (1.60), за умови, що коефіцієнти системи (1.1) виражаються через параметри по формулах (1.52) - (1.53).
2. Якісне дослідження побудованих класів систем
2.1 Дослідження системи (1.1) з коефіцієнтами, заданими формулами (1.28) - (1.31)
Будемо проводити наше дослідження в припущенні, що ,
,
.
Нехай ми маємо систему (1.1), коефіцієнти якої визначаються відповідно до формул (1.28) - (1.31), тоді система (1.1) запишеться у вигляді:
(2.1)
Інтегральні криві в цьому випадку мають вигляд:
(2.2)
(2.3)
Знайдемо стани рівноваги системи (2.1). Дорівнявши праві частини системи нулю й виключивши змінну y, одержимо наступне рівняння для визначення абсцис станів рівноваги:
(2.4)
З (2.4) одержуємо, що
,
,
,
.
Ординати крапок спокою мають вигляд:
,
,
,
.
Отже, маємо крапки
,
,
,
.
Досліджуємо поводження траєкторій на околицях станів рівноваги ,
,
,
.
Досліджуємо крапку .
Складемо характеристичне рівняння в крапці .
Звідси
,
(2.5)
,
Отже, характеристичне рівняння прийме вид:
=
=0.
,
Або
.
Характеристичними числами для крапки системи (2.1) будуть
.
Коріння - дійсні, різних знаків не залежно від параметра d. Отже, крапка
- сідло.
Досліджуємо крапку
.
Складемо характеристичне рівняння в крапці
.
Згідно
рівностям (2.5) характеристичне рівняння прийме вид:
,
Або
.
Характеристичними числами для крапки системи (2.1) будуть
,
тобто
,
.
Коріння - дійсні й одного знака, що залежать від параметра d. Якщо d (0, то крапка
- нестійкий вузол, якщо d (0, то крапка
- стійкий вузол. Досліджуємо крапку
.
Застосовуючи рівності (2.5), складемо характеристичне рівняння в крапці
:
Характеристичними числами для крапки
системи (2.1) будуть , тобто
,
. Коріння
- дійсні й одного знака, що залежать від параметра d. Якщо d0, то крапка
- стійкий вузол, якщо d0, то крапка
- нестійкий вузол.
Досліджуємо крапку
.
Складемо характеристичне рівняння в крапці
.
Застосовуючи рівності (2.5), одержимо:
,
Або
Характеристичними числами для крапки
системи (2.1) будуть
,
тобто
,
.
Коріння - дійсні й різні знаки не залежно від параметра d. Виходить, крапка
- сідло.
Досліджуємо нескінченно - вилучену частину площини наприкінці осі oy. Перетворення
[7]
переводить систему (2.1) у систему:
(2.6)
де .
Для дослідження станів рівноваги на кінцях осі y, нам необхідно досліджувати тільки крапку . Складемо характеристичне рівняння в крапці
.
Одержимо, що
Коріння - дійсні й одного знака. Отже, крапка
- стійкий вузол.
Досліджуємо нескінченно - вилучену частину площини поза кінцями осі oy перетворенням [7] Це перетворення систему (2.1) переводить у систему:
(2.7)
де .
Вивчимо нескінченно - вилучені крапки на осі U, тобто при z=0. Маємо:
Одержуємо, що . Отже, станів рівноваги поза кінцями осі oy немає.
Тепер дамо розподіл станів рівноваги системи (2.1) у вигляді таблиці 1.
Таблиця 1.
d |
|
|
|
| ∞ |
x=0 | |||||
(-∞; 0) | сідло | невуст. вузол | вуст. вузол | сідло | вуст. вузол |
(0; +∞) | сідло | вуст. вузол | невуст. вузол | сідло | вуст. вузол |
Положення кривих (2.2), (2.3) і розташування щодо їхніх станів рівноваги при d (0 і d (0 дається відповідно мал.1 (а, б).
Поводження траєкторій системи в цілому при d (0 і d (0 дається мал.4 (а, б) додатка А: Поводження траєкторій системи (2.1).
Досліджуючи вид кривих (2), (2.3) і розташування щодо їхніх станів рівноваги, переконуємося, що система (2.1) не має граничних циклів, тому що Воробйов А.П. [5] довів, що для систем, праві частини яких є поліноми другого ступеня, граничний цикл може оточувати тільки крапку типу фокуса. З огляду на розташування станів рівноваги відносно кривих (1.3) і (1.13), що є інтегралами системи (2.1), характер стану, містимо, що для системи (2.1) не може існувати граничних циклів, що оточують кілька станів рівноваги.
а (d (0)
б (d (0)
Мал.1
2.2 Дослідження системи (1.1) з коефіцієнтами, заданими формулами (1.41) - (1.42)
Будемо проводити наше дослідження в припущенні, що
Нехай ми маємо систему (1.1), коефіцієнти якої визначаються формулами (1.41) - (1.42). Тоді система (1.1) буде мати вигляд:
(2.8)
Інтегральні криві в цьому випадку мають вигляд:
(2.9)
(2.10)
Приватний інтеграл (1.13) у цьому випадку перетворюється у дві прямі (2.10)
1. Знайдемо стани рівноваги системи (2.8). Для цього дорівняємо праві частини системи нулю
Розглянемо два випадки:
Одержуємо:
З першого рівняння знайдемо y:
і підставляючи y у друге рівняння одержимо:
Вирішуючи це рівняння, знаходимо:
.
Отже, одержуємо
,
,
Отже, одержуємо крапки
,
,
,
і пряму x=0, що є траєкторією системи (2.8).
2. Досліджуємо поводження траєкторій на околицях станів рівноваги
Досліджуємо крапку .
Складемо характеристичне рівняння в крапці .
Звідси
(2.11)
Отже, характеристичне рівняння прийме вид:
Характеристичними числами для крапки системи (2.8) будуть
,
. Коріння
- дійсні й різні знаки не залежно від параметра d, значить крапка
- сідло. Досліджуємо крапку
. Згідно (2.11) складемо характеристичне рівняння в крапці
:
Характеристичними числами для крапки системи (2.8) будуть
,
.
Коріння - дійсні й одного знака, що залежать від параметра d. Якщо d0, то крапка
- нестійкий вузол, а якщо d0, то крапка
- стійкий вузол.
3. Досліджуємо поводження траєкторій в околиці крапки .
Складемо характеристичне рівняння згідно (2.11)
.
Характеристичними числами для крапки системи (2.8) будуть
,
Коріння - дійсні й одного знака, що залежать від параметра d. Якщо d0, то крапка
- стійкий вузол, якщо d0, то крапка
- нестійкий вузол.
4. Досліджуємо поводження траєкторій в околиці крапки .
Згідно (2.11) складемо характеристичне рівняння:
Характеристичними числами для крапки системи (2.8) будуть
,
. Коріння
- дійсні й різні знаки не залежно від параметра d, отже
- сідло. Досліджуємо нескінченно - вилучену частину площини системи (2.8) поза кінцями осі oy. Перетворення [7]
переводить систему (2.8) у систему:
(2.12)
де .
Вивчимо нескінченно - вилучені крапки на осі U, тобто при z=0. Одержуємо:
Отже .
Таким чином, одержуємо дві крапки N1 (0,-1) і N2 (0,1), які є станом рівноваги. Досліджуємо характер цих крапок звичайним способом.
Складемо характеристичне рівняння в крапці N1 (0,-1).
(2.13),
. Маємо:
,
.
Коріння - дійсні й різні за знаком, отже крапка N1 (0,-1) - сідло.
Досліджуємо крапку N2 (0,1). Згідно (2.13) складемо характеристичне рівняння:
,
.
Коріння - дійсні й одного знака, значить крапка N2 (0,1) - стійкий вузол.
Досліджуємо кінці осі y за допомогою перетворення [7] . Це перетворення переводить систему (2.8) у систему:
(2.14)
де .
Для дослідження станів рівноваги на кінцях осі y, нам необхідно досліджувати тільки крапку N3 (0,0). Складемо характеристичне рівняння в крапці N3 (0,0):
,