86281 (589958), страница 3

Файл №589958 86281 (Дослідження універсальних абелевих алгебр) 3 страница86281 (589958) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Але тоді легко перевірити, що – конгруенція на алгебрі ізоморфна конгруенції . Це й означає, що

Лема доведена.

Лема 3.3. Фактор-Алгебра нильпотентной алгебри нильпотентна.

Доказ:

Нехай

центральний ряд алгебри . Покажемо, що для будь-якої конгруенції на алгебрі ряд

є центральним, тобто

для кожного . У силу відомих теорем про ізоморфизмах для алгебр (див., наприклад, теореми II.3.7, II.3.11 [5]) і леми 3.2., досить показати, що

Нехай – конгруенція на алгебрі , що задовольняє визначенню 2.1. Визначимо бінарне відношення на алгебрі в такий спосіб

тоді й тільки тоді, коли найдуться такі елементи , що

Безпосередньою перевіркою переконуємося, що – конгруенція на алгебрі .

У такий спосіб залишилося показати, що задовольняє визначенню 2.1.

Нехай

тоді зі співвідношення

треба, що

Тому що

те . Отже,

Нехай . Тоді для деякого елемента , і .

Таким чином,

отже,

Тому що , те це означає, що

Нехай

де

Покажемо, що . У силу визначення найдуться , що

При цьому мають місце наступні співвідношення:

Отже,

Але тоді по визначенню 3.2.

А тому що , те

Тепер з того, що

треба, що

Лема доведена.

Доказ наступного результату здійснюється простою перевіркою.

Лема 3.4. Нехай – конгруенція на алгебрі , . Полога

тоді й тільки тоді, коли для кожного , одержуємо конгруенцію на алгебрі .

Лема 3.5. Прямий добуток кінцевого числа нильпотентних алгебр нильпотентне.

Доказ:

Очевидно, досить показати, що якщо , і – нильпотентне алгебри, те – нильпотентна алгебра.

Нехай

центральні ряди алгебр і відповідно. Якщо , те, ущільнивши перший ряд повторюваними членами, одержимо центральний ряд алгебри довжини . Таким чином, можна вважати, що ці ряди мають однакову довжину, рівну .

Побудуємо тепер ряд конгруенції на алгебрі в такий спосіб:

де тоді й тільки тоді, коли , , .

Покажемо, що останній ряд є центральним, тобто для довільного . Тому що

те на алгебрах і відповідно задані конгруенції й , що задовольняють визначенню 2.1.

Визначимо бінарне відношення на алгебрі в такий спосіб:

і тільки тоді, коли

и

Легко безпосередньою перевіркою переконатися, що – конгруенція на алгебрі . Залишилося показати, що задовольняє визначенню 2.1.

Нехай має місце

Тоді відповідно до уведеного визначення

звідки треба, що

т.е.

Нехай

Це означає

Але тоді

и

Отже,

Нехай має місце

Це означає, що

Виходить, і , тобто . Лема, доведена.

Як відомо, спадкоємною формацією називається клас алгебр, замкнутих відносно фактор-алгебр, підпрямих добутків і відносно підалгебр.

Результати, отримані в лемах 3.1, 3.3, 3.5 можна сформулювати у вигляді наступної теореми.

Теорема 7 Клас всіх нильпотентних алгебр мальцевського різноманіття є спадкоємною формацією.

Визначення 3.3. -арна група називається нильпотентной, якщо вона має такий нормальний ряд

що

и

для кожного .

Тому що конгруенції на -арних групах попарно перестановочні (дивися, наприклад, [2]), те це дає можливість використовувати отримані результати в дослідженні таких груп.

Лема 3.6. Нехай -арна група. і – нормальні підгрупи групи й .

Тоді , де й конгруенції, індуковані відповідно підгрупами й на групі .

Доказ:

Підгрупи й індуцирують на групі конгруенції й , обумовлені в такий спосіб:

-арна операція.

Визначимо на бінарне відношення в такий спосіб:

тоді й тільки тоді, коли існують такі послідовності елементів і з і відповідно, що

Покажемо, що – підалгебра алгебри . Для скорочення запису будемо надалі опускати -арний оператор .

Нехай

Тому що , те

Тому що , те

Тому в силу того, що ,

Отже, – підалгебра алгебри .

Нехай – нейтральна послідовність групи , а, отже, і групи . Тоді з визначення бінарного відношення треба, що

Тим самим довело, що – конгруенція на .

Тo, що задовольняє визначенню 2.1, очевидно. Лема доведена.

Лема 3.7. Нехай – нильпотентна -арна група. Тоді задовольняє визначенню 2.1.

Доказ:

Тому що для кожного , те індуцирує конгруенцію на . У такий спосіб володіє поруч конгруенції, що у силу леми 3.6 буде центральним. Лема доведена.

Зокрема, для довільної бінарної групи звідси треба, що нильпотентна тоді й тільки тоді, коли, задовольняє визначенню 3.2. У цьому випадку теорема 3.2 просто констатує той факт, що клас всіх нильпотентних груп утворить спадкоємну формацію.

4. Класи абелевих алгебр і їхнї властивості

Як уже було відзначено в параграфі 3, алгебра називається нильпотентною, якщо існує такий ряд конгруенцій

називаний центральним, що

для кожного .

Визначення 4.1. У випадку, якщо для нильпотентной алгебри в центральному ряді , тобто якщо для неї , то алгебра називається, абелевої.

Лема 4.1. Будь-яка підалгебра абелевої алгебри абелева.

Доказ:

Нехай підалгебра абелевої алгебри .

Тому що по визначенню , то на існує така конгруенція , що:

1) з

завжди треба

2) для будь-якого елемента

завжди виконується

3) якщо

те

Розглянемо конгруенцію

Дійсно, якщо

для , те

і для кожної -арної опеации маємо

Але оскільки підалгебра алгебри , одержуємо

Виходить, підалгебра алгебри .

Очевидно, що для будь-якого елемента має місце

Таким чином, конгруенція на алгебрі .

Нехай

тоді

те Якщо , те

і, виходить,

Нехай, нарешті,

Тоді

і значить .

Отже, конгруенція задовольняє визначенню 2.1. Лема доведена.

Лема 4.2. Фактор-Алгебра абелевої алгебри абелева.

Доказ:

Нехай алгебра – абелева, тобто . Покажемо, що для будь-якої конгруенції на виконується

Нехай – конгруенція на алгебрі , що задовольняє визначенню 2.1.

Визначимо бінарне відношення на алгебрі в такий спосіб:

тоді й тільки тоді, коли найдуться такі елементи , , , , що

Безпосередньою перевіркою переконуємося, що – конгруенція на алгебрі .

У такий спосіб залишилося показати, що задовольняє визначенню 2.1. Нехай

тоді

Нехай

Тоді , і по визначенню 2.1

При цьому й . Відповідно до наших позначень одержуємо, що

Нехай

Тоді найдуться , що

и

При цьому

Отже,

Але тоді по визначенню 3.1. . А тому що , те

Тепер з того, що

треба, що

Лема доведена.

Лема 4.3. Прямий добуток кінцевого числа абелевих алгебр абелево.

Доказ:

Очевидно, досить показати, що якщо , і – абелеви алгебри, те – абелева алгебра.

Нехай і . Це означає, що на алгебрах і задані конгруенції й задовольняюче визначення 2.1.

Визначимо бінарне відношення на алгебрі в такий спосіб:

тоді й тільки тоді, коли

и

Безпосередньою перевіркою переконуємося, що – конгруенція на алгебрі .

У такий спосіб залишилося показати, що задовольняє визначенню 2.1.

Нехай

тоді

Нехай . Це означає, що й . Але тоді

и

Отже,

Нехай

тоді

І

Це означає, що й . У такий спосіб

Лема доведена.

Результати, отримані в лемах 4.1, 4.2, 4.3 можна тепер сформулювати у вигляді наступної теореми.

Теорема 8 Клас всіх абелевих алгебр мальцевського різноманіття є спадкоємною формацією.

Нехай – конгруенція на алгебрі . – підалгебра алгебри , і . Тоді введемо нове позначення

Лема 4.4. Нехай визначена множина . Тоді – конгруенція на ,

Доказ:

Тому що , те для будь-якого елемента завжди найдеться такий елемент , що . Отже,

де .

У такий спосіб .

Нехай тепер , . Тоді

де . Отже, для кожної -арної операції одержуємо

Тепер, оскільки , те по лемі 3.2 – конгруенція на .

Нехай . Тоді, мабуть,

. Тому що

те

Покажемо тепер, що . Допустимо противне. Тоді найдеться така пари , що й . З визначення треба, що існує така пари , що

Тому що

те застосовуючи мальцевський оператор одержуємо

З леми 2.2. тепер треба, що .

Отже, . Лема доведена.

Підалгебра алгебри називається нормальної в , якщо є суміжним класом по деякій конгруенції алгебри .

Лема 4.5. Будь-яка підалгебра абелевої алгебри є нормальною.

Доказ:

Нехай – підалгебра абелевої алгебри . Тому що , те по лемі 4.4. на існує така конгруенція , що

Лема доведена.

Висновок

Таким чином, у даній роботі ми докладно з доказами на підставі результатів робіт [3] і [4] виклали теорію централізаторів конгруенції універсальних алгебр і розглянули формаційні властивості нильпотентних алгебр, на підставі результатів 3 увели поняття абелевої алгебри. Використовуючи методи дослідження роботи [1] довели наступний основний результат: клас всіх універсальних абелевих алгебр із мальцевського різноманіття утворить спадкоємну формацію.

Список літератури

1[] Кушніров Л.О., Елементи загальної алгебри. – К., 2003

2[] Шеметков Л.А., Скиба А.Н., Формації алгебраїчних систем. – К., 2004

3[] Smith J.D. Mal'cev Varieties // Lect. Notes Math. 1976. V.554.

4[] Русаков С.О., Алгебраїчні -арні системи. – К., 2003

5[] Кон П., Універсальна алгебра. – К., 2004

6[] Ходалевич О.Д., Властивості централізаторів конгруенції універсальних алгебр . – К., 2004

7[] Ходалевич О.Д. Формаційні властивості нильпотентних алгебр . – К., 2004

8[] Ходалевич А.Д. Прикладна алгебра . – К., 2004

Характеристики

Тип файла
Документ
Размер
1,85 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее