86132 (589936), страница 2

Файл №589936 86132 (Операторные уравнения) 2 страница86132 (589936) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Далее, пусть существует АL–1. рассмотрим N(A). Пусть x N(A), тогда Аx = 0. применим к этому равенству оператор АL–1, тогда АL–1Аx = 0, откуда x = 0. итак, всякое x N(A) оказывается равным 0. Значит, N(A) = {0} и, по теореме 4, А взаимно однозначен, т.е. для уравнения (2) справедлива теорема единственности. Что и требовалось доказать.

Пусть X – банахово пространство. Рассмотрим банахово пространство L(X) – пространство линейных, ограниченных и заданных на всем множестве операторов. Пусть I – тождественный оператор в L(X). Очевидно, что I непрерывно обратим. Ниже доказывается, что вместе с I непрерывно обратимы все операторы - единичного шара в L(X), т.е. все такие А, для которых справедливо неравенство .

Для краткости положим C = I – A. Ниже мы будем ссылаться на признак Вейерштрасса: пусть X – банахово пространство, тогда всякий абсолютно сходящийся в X ряд сходится.

Теорема 8. Пусть и ; тогда оператор I C непрерывно обратим. При этом справедливы оценки

(1)

(2)

Доказательство. Рассмотрим в L(X) ряд

I+C+C2+C3+… (3)

Так как , то ряд (3) оценивается сходящимся числовым рядом – геометрической прогрессией

По признаку Вейерштрасса ряд (3) сходится равномерно, т.е.

.

Где S – сумма ряда (3). Далее простой проверкой убеждаемся, что

,

.

Но при этом (ибо и ), а . Поэтому, в пределе имеем равенства (IC)S = I и S(IC) = I. По лемме 1 отсюда заключаем, что I – C непрерывно обратим и S=(IC)-1. Далее,

,

.

Переходя в этих неравенствах к пределу при , получаем оценки (1) и (2). Теорема доказана.

Теперь рассмотрим более общий случай пространства L(X,Y). Пусть А L(X,Y) непрерывно обратим.

Теорема 9. Пусть A, B L(X,Y), А непрерывно обратим и выполнено неравенство . Тогда B непрерывно обратим и справедливы оценки

, .

§4. Абстрактные функции

Пусть S – некоторое множество на числовой оси или в комплексной плоскости, а X – нормированное пространство.

Рассмотрим функцию x( ) с областью определения S и с областью значений в X. Такие функции принято называть абстрактными функциями числовой переменной или векторными функциями числовой переменной, поскольку элементы линейного (иначе – векторного) пространства мы называем также векторами. На абстрактные функции числовой переменной переносятся многие понятия и факты математического анализа. Далее рассмотрим сведения о пределах и непрерывности таких функций, о разложении в степенные ряды, а также понятие аналитической абстрактной функции.

Пусть x( ) определена в окрестности точки 0, за исключением, быть может, самой точки 0. Элемент а X будем называть пределом функции x( ) при 0 и записывать

при 0,

если при 0.

Степенные ряды – это специальный случай рядов в нормированном пространстве, когда члены ряда зависят от параметра .

Рассмотрим в нормированном пространстве X ряд вида , где xк X, а – вещественное или комплексное переменное. Поскольку можно ввести новую переменную 0 = , то в дальнейшем мы полагаем 0 = 0 и рассматриваем степенные ряды вида

(1)

Конечная сумма называется частичной суммой степенного ряда (1).

Пусть – множество всех точек , для которых ряд (1) сходится. называется областью сходимости ряда (1).

Сумму ряда (1) при обозначим через S( ) (это абстрактная функция, определенная на со значениями в X), при этом будем писать

, при .

Последнее равенство означает, что Sn( ) → S( ) при n→∞ для всех .

Очевидно, область сходимости любого степенного ряда (1) не пуста, так как 0 . Как и в случае скалярных функций, справедлива следующая теорема.

Теорема 10 (Абель). Пусть 0 ≠ 0 и 0 , тогда круг содержится в . Во всяком круге Sr(0), где r < , ряд (1) сходиться абсолютно и равномерно относительно .

Теорема 11. Пусть два степенных ряда равны в круге SR(0), R>0:

;

тогда равны все их коэффициенты: (k=0, 1, 2, …)

Дифференцирование абстрактных функций

Пусть функция числового переменного λ со значениями в банаховом пространстве X определена в окрестности точки λ0.

По определению производной x’(λ0) функции x(λ) в точке λ0 называется предел

,

если этот предел существует (и конечен). Если имеет производную в точке λ0, то она называется дифференцируемой в этой точке.

§5. Аналитические абстрактные функции и ряды Тейлора

Абстрактную функцию x( ) будем называть аналитической при =0, если она представима в некоторой окрестности точки =0 сходящимся степенным рядом:

(1)

с ненулевым радиусом сходимости.

Теорема 12. Если x( ) – аналитическая абстрактная функция при =0, то x( ) непрерывна в круге SR(0), где R – радиус сходимости степенного разложения (1).

Теорема 13. Если x( ) – аналитическая абстрактная функция при =0, то x( ) дифференцируема в круге SR(0) сходимости своего степенного разложения.

Пусть x( ) бесконечно дифференцируема в точке 0. Ряд вида

называется рядом Тейлора функции x( ).

Если x( ) аналитична при =0, то ее ряд Тейлора, в силу теоремы 10, является ее степенным разложением и, значит, сходится к ней в SR(0).

Понятие абстрактной аналитической функции используется в широко применяемом на практике методе малого параметра.

§6. Метод малого параметра в простейшем случае

Рассмотрим следующее уравнение:

Аx Сx=y. (1)

Здесь А, С L(X,Y) и y Y заданы, - скалярный параметр, , а неизвестное x разыскивается в X. Если , т.е.

, (2)

то, согласно теореме 9, оператор А– С непрерывно обратим, и тогда решение уравнения (1) существует, единственно и задается явной формулой

. (3)

Отсюда видно, что в круге (2) решение является аналитической функцией параметра и, следовательно, может быть найдено в виде

(4)

На этой идее основывается метод малого параметра для уравнения (1). Подставим ряд (4) в уравнение (1) и, согласно теореме единственности разложения в степенной ряд, приравниваем коэффициенты при одинаковых степенях в правой и левой частях получившегося тождества:

.

Таким образом, мы приходим к следующей рекуррентной системе уравнений для определения x0, x1, …:

Аx0=y, Аx1=Сx0, …, Аxк=Сxк-1, …

Так как А непрерывно обратим, то отсюда последовательно находим

x01y, x1= А1(СА1)y, …, xк= А1(СА1)кy, …

Следовательно,

. (5)

Мы получили решение (3), разложенное в степенной ряд. Если мы хотим оборвать степенной ряд и ограничиться приближенным решением

то можно оценить ошибку. Вычитая из ряда (5) его частичную сумму (6) и оценивая разность по норме, получим

.

§7. Метод малого параметра в общем случае

Пусть дано уравнение

А( )х = у( ). (1)

Здесь А( ) L(X,Y) задана при каждом , , или, как говорят, А( ) – оператор-функция. Пусть А( ) аналитична при =0, а оператор А(0) непрерывно обратим, у( ) – заданная аналитическая функция при =0 со значениями в Y. Неизвестное x разыскивается в X.

Аналитичность А( ) и у( ) в точке 0 означает, что они разлагаются в следующие степенные ряды с ненулевыми радиусами сходимости, которые равны и соответственно:

, . (2)

Из аналитичности А( ) следует непрерывность А( ) при =0. следовательно, найдется число r > 0 такое, что в круге

.

Отсюда вытекает, что в круге оператор-функция А( ) непрерывно обратима и, следовательно, уравнение (1) имеет единственное решение

,

при этом x( ) аналитична в точке =0 и радиус сходимости соответствующего степенного ряда равен min( , r). Для фактического построения x( ) удобно воспользоваться методом малого параметра. Будем разыскивать x( ) в виде

. (3)

Подставляя ряд (3) в уравнение (1) и учитывая разложения (2), приходим к следующей системе для неопределенных коэффициентов x0, x1, x2, …:

А0x0 = y0, А0x11x0 = y1,

А0x2 + А1x1 + А2x0 = y2, (4)

. . . . . . . . . . .

, …

Здесь А0 = А(0) непрерывно обратим. Решая последовательно уравнения получившейся системы, находим

, , … (5)

Возникающие здесь формулы довольно громоздки, однако этим путем можно найти решение уравнения с любой степенью точности. Метод малого параметра особенно удобен в тех случаях, когда обращение оператора А(0) – задача более простая, чем задача обращения оператора А( ).

§8. Метод продолжения по параметру

8.1. Формулировка основной теоремы

В качестве еще одного приложения теорем об обратных операторах рассмотрим один из вариантов метода продолжения по параметру. Пусть и А непрерывно обратим. Если , то, согласно теореме 9 §3, В также непрерывно обратим. Оказывается, при определенных условиях можно доказать, что В будет непрерывно обратим и в том случае, когда он очень далек от А. Идея заключается в следующем. Рассмотрим непрерывную на отрезке [0, 1] оператор - функцию такую, что А(0)=А, А(1)=В. Иначе говоря, в L(X, Y) рассматривается непрерывная кривая, соединяющая точки А и В. Будем предполагать, что для оператор – функции выполняется следующее условие:

  1. Существует постоянная такая, что при всех и при любых справедливо неравенство

. (1)

Ниже будет доказана следующая теорема.

Теорема 14. Пусть А(λ) – непрерывная на [0, 1] оператор-функция (при каждом ), причем оператор А(0) непрерывно обратим. Если для А(λ)выполняется условие I, то А(I)непрерывно обратим, причем .

Характеристики

Тип файла
Документ
Размер
3,69 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее