86020 (589918), страница 9

Файл №589918 86020 (Геометрии Галилея и Минковского как описания пространства-времени) 9 страница86020 (589918) страница 92016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

Оказывается, внутренняя область изотропного гиперконуса пересекается с каждой псевдоевклидовой гиперплоскостью, проходящей через вершину гиперконуса, по внутренней области изотропного конуса этой гиперплоскости.


Рис. 6.

Здесь будет полезна наглядная иллюстрация с понижением размерности: вместо четырехмерного псевдоевклидова пространства индекса 1 рассмотрим трехмерное псевдоевклидово пространство индекса 1, а вместо псевдоевклидовой гиперплоскости – псевдоевклидову плоскость. Как видно на рис. 6, внутренняя область изотропного конуса пересекается с плоскостью по внутренней области, мнимых секторов плоскости. Если не выходить из псевдоевклидовой плоскости, то за пределами мнимых секторов можно найти только вещественные секторы. Но, выйдя из плоскости в трехмерное пространство, мы найдем вне мнимых секторов плоскости внутреннюю область изотропного конуса (в частности, мнимые секторы другой плоскости). Аналогичным образом, оставаясь в трехмерном пространстве, мы обнаруживаем за пределами внутренней области изотропного конуса только его внешнюю область. Но если выйти из трехмерного пространства в четырехмерное, то вне внутренней области изотропного конуса найдется внутренняя область изотропного гиперконуса (в частности, внутренняя область изотропного конуса другой гиперплоскости).

Аналогичное сравнение можно провести для внешних областей изотропного гиперконуса четырехмерного пространства Минковского, изотропного конуса трехмерного псевдоевклидова пространства и вещественных секторов псевдоевклидовой плоскости. Внешняя область изотропного гиперконуса состоит из точек, координаты которых удовлетворяют условию

или

(2.46)

Все векторы четырехмерного псевдоевклидова пространства индекса 1 независимо от точки их приложения можно разбить на три класса по признаку их принадлежности к одной из трех областей. Мы будем говорить, что произвольный вектор

принадлежит внутренней области изотропного гиперконуса, если его координаты удовлетворяют условию

аналогичному условию (2.45) для радиус-векторов, длина (модуль) всякого вектора внутренней области выражается мнимым числом (см. (2.37)). Мы будем говорить, что произвольный вектор а принадлежит внешней области изотропного гиперконуса, если его координаты удовлетворяют условию

,

аналогичному условию (2.36) для радиус-векторов. Длина (модуль) всякого вектора внешней области выражается вещественным числом. Наконец, если координаты вектора а удовлетворяют условию

то вектор а является изотропным и коллинеарным некоторому радиус-вектору, принадлежащему изотропному гиперконусу (2.43).

Рассмотрим в четырехмерном пространстве Минковского множество всех радиус-векторов , перпендикулярных к ненулевому вектору а. Это множество определяется уравнением

(2.47)

которое в координатной форме, согласно (2.36), принимает вид

(2.48)

Уравнение (5.16) линейное (все переменные входят в него только в первой степени), как и уравнение плоскости (2.29), но в уравнении (2.48) больше переменных, причем три из них могут принимать независимо друг от друга любые значения. Это говорит о том, что уравнение (2.48) определяет в четырехмерном пространстве трехмерное множество точек, аналогичное плоскости, т.е. гиперплоскость общего положения (проходящую через начало координат). Вектор а в уравнении (5.47) называют нормалью к гиперплоскости, потому что всякий радиус-вектор, принадлежащий этой гиперплоскости, перпендикулярен к вектору а.

Проводя такие же рассуждения, но уже для четырех переменных, нетрудно доказать, что если нормаль а к гиперплоскости (2.48) принадлежит внутренней области изотропного гиперконуса, то гиперплоскость несет на себе собственно евклидову метрику, т.е. является трехмерным собственно евклидовым пространством. Можно также доказать, что гиперплоскость, нормаль к которой принадлежит внешней области изотропного гиперконуса, несет на себе псевдоевклидову метрику, т.е. является трехмерным псевдоевклидовым пространством такого же типа, как рассмотренное выше. Наконец, гиперплоскость, перпендикулярная к изотропному вектору, содержит в себе этот вектор и обладает специфическими метрическими свойствами, отличными от собственно евклидовых и псевдоевклидовых свойств. Такую гиперплоскость называют изотропной. В ней содержатся векторы вещественные длины, но нет ни одного вектора мнимой длины и имеется только одно изотропное направление. Это значит, что изотропная гиперплоскость не проникает во внутреннюю область изотропного гиперконуса и имеет с ним только одну общую прямую, т.е. является касательной гиперплоскостью к изотропному гиперконусу.


3. Эксперимент

Практические занятия по теме «Геометрия Галилея и Минковского».

Цели: 1. Формирование знаний об этапах решения задач на построение и умений их осуществлять;

  1. Формирование представлений об основных методах решения задач на построение;

  2. Формирование навыков самостоятельной работы.

План занятий:

Этапы изучения темы
Тема занятия
Количество часов

1. Пропедевтический

этап

Основы конструкти-

вной геометрии. Ос-

новные геометричес-

кие построения.

2

2. Систематический

этап

1. Метод пересечения фигур

2. Алгебрaический

метод

3. Метод параллель

ного переноса

4. Метод подобия

5

3. Итоговый этап

Самостоятельная ра-

бота

1


Практические занятия по теме «Методы решения задач на построение»

Занятие 1

Тема: Основы конструктивной геометрии

Цели: 1. Ознакомление с основными требованиями конструктивной геометрии;

  1. Формирование системы аксиом инструментов построения: линейки, циркуля, двусторонней линейки, прямого угла.

Оборудование:

  1. Рассмотренные выше инструменты;

  2. Плакаты, отражающие основные свойства конструктивной геометрии.

Методы и средства:

  1. Лекция с включённой беседой;

  2. Параллельная работа учителя у доски, а учащихся в тетради;

  3. Самостоятельная работа учащихся в тетради.

План-коспект занятия:

  1. Организационный момент.

  2. Вступительная беседа и объяснение нового материала.

Преподаватель: Данные занятия затрагивают основные моменты очень интересного раздела геометрии, который называется конструктивная геометрия. Как раздел общей геометрии, она изучает геометрические построения. В конструктивной геометрии существуют основные требования.

  1. Каждая данная фигура построена;

  2. Если построены две или более фигуры, то построено их соединение;

  3. Если две фигуры построены, то можно установить является ли их пересечение пустым множеством;

  4. Если разность двух фигур не является пустым множеством, то эта разность построена;

  5. Можно построить точку, заведомо принадлежащую или не принадлежащую построенной фигуре.

Преподаватель: Каждая задача на построение состоит из требования построить ту или иную фигуру при помощи данных соотношений между элементами искомой фигуры и элементами данной фигуры, используя данный набор инструментов. Мы будем рассматривать построения при помощи циркуля и линейки.

Таким образом, каждая построенная фигура, удовлетворяющая требуемым условиям задачи, называется решением задачи. Найти решение задачи на построение, – значит, свести её к конечному числу из некоторых элементарных построений, то есть указать пошаговую последовательность построений, после выполнения которых мы получим искомую фигуру.

Решить задачу на построение, – значит найти все её решения. А теперь рассмотрим элементарные построения (см. Глава 1, § 1,2).

Преподаватель: На уроках геометрии вы уже выполняли некоторые простые задачи на построение. Давайте вспомним какие.

Учащиеся: Деление отрезка пополам, деление угла пополам, построение треугольника по двум сторонам и углу между ними, по трём сторонам, по двум углам и прилежащей стороне.

Преподаватель: Правильно. Попытайтесь самостоятельно выполнить эти построения.

Каждому ученику предлагается задача на построение.

Предлагаемые задачи:

  1. Разделите отрезок пополам.

  2. Разделите угол пополам.

  3. Постройте треугольник по двум сторонам и углу между ними.

  4. Постройте треугольник по трём сторонам.

  5. Постройте треугольник по двум углам и прилежащей стороне.

Домашнее задание: Выполнить нерассмотренные задачи на построение.

Заключение

На основе четырехмерного псевдоевклидова пространства индекса 1 может быть построена такая модель мира, которая всецело согласуется со специальной теорией относительности, даже объясняет ее и постулаты Эйнштейна, и при этом ни в чем не противоречит той картине мира, которую рисуют нам чувственные восприятия.

Вообще на изотропной плоскости угол между векторами может принимать лишь одно из двух значений: угол между любыми неизотропными векторами равен нулю, угол между любым неизотропным вектором и изотропным равен . Все изотропные прямые на изотропной плоскости параллельны между собой, но отношение параллельности, как линейное свойство пространства, само по себе не характеризуется величиной угла. Вместе с тем изотропные прямые изотропной плоскости перпендикулярны одна другой и каждая самой себе. Метрическому отношению перпендикулярности изотропных не соответствует определенная величина угла.

Из специальной теории относительности следует, что пространство и время не независимы: при переходе от одной инерциальной системы отсчета к другой пространственные координаты и время преобразуются друг через друга посредством преобразований Лоренца. Введение пространства Минковского позволяет представить преобразования Лоренца как преобразование координат событий x1, x2, x3, x4 при поворотах четырехмерной системы координат в этом пространстве.

Своеобразие геометрии пространства Минковского определяется тем, что расстояние между двумя точками (событиями) определяется квадратами составляющих четырехмерного вектора на временную и пространственные оси с разными знаками. Вследствие этого четырехмерный вектор с отличными от нуля составляющими может иметь нулевую длину; это имеет место для вектора, соединяющего два события, связанных световым сигналом.

Геометрия пространства Минковского позволяет наглядно интерпретировать кинематические эффекты специальной теории относительности (изменения длин и скорости течения времени при переходе от одной инерциальной системы отсчета к другой) и лежит в основе современного математического аппарата теории относительности.

Литература

1. Алгебра, геометрия. Пробные учебники для 7 класса средней школы. – М.: Просвещение, 1983, с. 72.

2. Барсуков А.Н. Алгебра, ч. 1.–М.: Учпедгиз, 1958, с. 50.

3. Вигнер Е. Непостижимая эффективность математики в естественных науках // УФН. – 1968.–Т. 94, вып. 3.–С. 537, 540.

4. Головина. Л.И. Линейная алгебра и некоторые ее приложения. – М.: Наука, 1985, с. 83.

5. Дубнов Я.С. Основы векторного исчисления, ч. 1. – М.; Л.: Гостехиздат, 1950, с. 21.

6. Ильин В.А., Позняк Э.Г. Аналитическая геометрия. – М.: Наука, 1981, с. 46.

7. Ильин, В.А., Позняк Э.Г. Линейная алгебра. – М.: Наука, 1984, с. 41, 82.

8. Курош А.Г. Курс высшей алгебры. – М.: Гостехиздат, 1952, с. 9.

9. Принцип относительности. Сборник работ по специальной теории относительности. – М.: Атомиздат, 1973, с. 173, 167, 168.

10. Рашевский П.К. Риманова геометрия и тензорный анализ. – М.: Наука, 1967, с. 86, 296.

11. Савельев II, В. Курс общей физики, т. 1. – М.: Наука, 1986, с. 51.

12. Сазанов А.А. Четырехмерный мир Минковского. – М.: Наука. Гл. ред. физ.-мат. лит., 1988. – (Пробл. науки и техн. прогресса). – 224 с.

13. Сойер У.У. Прелюдия к математике. – М.: Просвещение, 1972, с. 8, 54.

14. Угаров В.А. Специальная теория относительности. – М.: Наука, 1977, с. 315–332, 146.

15. Фихтенголъц Г.М. Основы математического анализа, т. 1. – М.: Наука, 1968, с. 16.

16. Храмов Ю.А. Физики. Биографический справочник. – М.: Наука, 1983, с. 169, 278, 225.

17. Шабат Б.В. Введение в комплексный анализ, ч. 1. – М.: Наука, 1985, с. 5.

Характеристики

Тип файла
Документ
Размер
4,6 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее