85677 (589855), страница 2
Текст из файла (страница 2)
Предположим, что кривая не проходит через начало координат, то есть p0. Тогда из условия (1.223) получаем, что =0.
Условия (1.221), (1.222) запишутся в виде:
am+cn-p=0, (1.231)
bm+dn-p= 0. (1.232)
Из условий (1.211) и (1.213) имеем:
(a1-)m= 0,
(3b1-)n=0.
Пусть m0, тогда a1-=0 и
=a1, (1.24)
а при n0, получаем, что 3b1-=0 и
=3b1. (1.25)
Учитывая (1.24) и (1.25) из условия (1.212) находим выражение коэффициента m:
m= , (1.26)
а соотношение (1.231) даст значение коэффициента p:
p= . (1.27)
Из равенства (1.232), с учетом полученных выражений (1.26) и (1.27), находим условие на коэффициенты системы (1.1):
[3(a1b1-2b1b2) a+(2a1b2-a12) b-3b12c+a1b1d] n=0. (1.28)
Итак, установлена следующая теорема:
Теорема 1.2 Система (1.1) имеет частный интеграл (1.18), коэффициенты которого выражаются формулами (1.26),(1.27), при условии, что коэффициенты системы связаны соотношением (1.28) и c1=a2= 0, c2= 3b1.
1.3 Необходимые и достаточные условия существования у системы (1.1) двух частных интегралов (1.4), (1.18)
В разделах 1, 2 мы получили, что система (1.1) будет иметь два частных интеграла в виде кривых третьего и первого порядков при условии, что коэффициенты системы связаны соотношениями:
(2ab1-ba1)[3(32a1b1b2-15a12b1-16b1b22) a+(8a1b22-18a12b2+9a13) b+
24(a1b12-b12b2) c+(16a1b1b2-15a12b1) d]=0,
(2ab1-ba1)[12(7a1b1b2-3a12b1-4b1b22) a2+6(3a1b12-4b12b2) ac+(3a12b1-
-4a1b1b2) bc+2(4a12b2-3a13)bd –8a1b12cd+4a12b1d2]=0,
[3(a1b1-2b1b2) a+(2a1b2-a12) b-3b12c+a1b1d] n=0.
Причем b10, a10, 2b1a-ba10.
Рассмотрим частный случай, т.е. будем предполагать, что коэффициенты
a1= , b1=1, b2=0.
Следовательно, наши соотношения запишутся в виде:
a-
b-3c+
d=0, (1.30)
- a+
b+6c-
d=0, (1.31)
- a2+
d2+
ac+
bc-
bd-2cd=0. (1.32)
Выразим из условия (1.30) коэффициент c
c= a-
b+
d, (1.33)
подставим (1.33) в равенство (1.31), найдем коэффициент d
d= (-21a+
b). (1.34)
Из условия (1.32), учитывая (1.33) и (1.34) находим
b= a.
Получаем, что коэффициенты системы (1.1) определяются по следующим формулам:
b= a,
c=- a, (1.35)
d=- a,
a1= , b1=1, a2=0, c1=0, b2=0, c2=3b1=3.
Равенства (1.15), (1.26) и (1.27), при условии, что имеют место формулы (1.35), дадут следующие выражения для коэффициентов интегралов (1.4) и (1.18):
2=12a, 2= - a,
2=a, 3= a2,
3= - a2,=
a3, (1.36)
m= - n, p= -
an.
Теорема 1.3 Система (1.1) имеет два частных интеграла вида (1.4) и (1.18) с коэффициентами, определенными формулами (1.36), при условии, что коэффициенты системы (1.1) выражаются через параметры по формулам (1.35).
2 ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ТРАЕКТОРИЙ СИСТЕМЫ НА ПЛОСКОСТИ
2.1 Исследование системы (1.1) с коэффициентами, заданными формулами (1.35) в конечной плоскости
Пусть мы имеем систему (1.1), коэффициенты которой определяются согласно формулам (1.35),т.е. систему:
(2.1)
Интегральные кривые (1.4),(1.18), согласно формулам (1.36), имеют вид:
x3+12ax2- axy+ay2+
a2x-
a2y+
a3=0, (2.2)
- nx+ny-
an=0. (2.3)
Найдем состояния равновесия системы (2.1). Приравняв правые части системы к нулю и исключив переменную x, получим следующее уравнение для определения ординат состояний равновесия:
8192y4-11776ay3+5480a2y2-825a3y=0. (2.4)
Из (2.4) получаем, что
y0=0, y1= a, y2=
a, y3=
a. (2.5)
Абсциссы точек покоя имеют вид:
x0=0, x1= - a, x2= -
a, x3= -
a. (2.6)
Согласно (2.5) и (2.6) заключаем, что система (2.1) имеет четыре состояния равновесия - ,
,
,
.
Исследуем поведение траекторий в окрестностях состояний равновесия ,
,
,
.
-
Исследуем точку
.
Составим характеристическое уравнение в точке [10, с. 1760-1765]
Отсюда
(2.7)
Следовательно, характеристическое уравнение примет вид:
=
=0.
,
Характеристическими числами для точки системы (2.1) будут
.
Корни - действительные, различных знаков не зависимо от параметра a. Следовательно, точка
- седло.
-
Исследуем точку
.
Составим характеристическое уравнение в точке A. Согласно
равенствам (2.7) характеристическое уравнение примет вид:
,
,
то есть
,
.
Корни - действительные и одного знака, зависящие от параметра a. Если a0, то точка
- устойчивый узел, если a0, то точка
-неустойчивый узел.
-
Исследуем точку
.
Применяя равенства (2.7), составим характеристическое уравнение в точке B:
,
.
Корни - действительные и одного знака. Следовательно, точка
- седло при любом параметре a .
-
Исследуем точку
.
Учитывая выражения (2.7), составим характеристическое уравнение в точке:
,
Характеристическими числами для точки системы (2.1) будут
,
Корни - действительные и одного знака.Следовательно точка
- устойчивый узел, если a0 и неустойчивый узел, если a<0 .
2.2 Исследование бесконечно-удаленной части плоскости
Очень важным для исследования вопроса о наличии замкнутых траекторий являются сведения о поведении траекторий при удалении в бесконечность, то есть исследование бесконечно-удаленных частей плоскости.
Для этого воспользуемся преобразованием Пуанкаре [7]:
, (2.8)
которое позволяет изучить особые точки лежащие на экваторе сферы Пуанкаре вне концов оси OY.
Имеем
Значит преобразование (2.8) переводит систему (1.1) в систему:
(2.9)
Введем новое время . Система (2.9) примет вид:
(2.10)
Изучим бесконечно-удаленные точки на оси u, т.е. при z=0.
Получаем
(2.11)
Приравнивая второе уравнение системы (2.11) к нулю, получаем
Таким образом, состоянием равновесия являются две точки N1(0,0) N2(0, ).
Исследуем характер точек N1, N2.
1. Исследуем точку N1(0,0).
Составим характеристическое уравнение системы (2.10) в точке N1:
(2.12)
Согласно выражениям (2.12), получаем характеристическое уравнение:
Получим, что
Корни - действительные и одного знака. Следовательно, точка N1(0,0) - устойчивый узел.
2. Исследуем точку N2(0, ).
Учитывая выражение (2.12), составим характеристическое уравнение в точке N2:
соответственно характеристическими числами будут являться
Корни - действительные и различных знаков. Следовательно, точка N2(0,
)-седло.
Исследуем бесконечно-удаленную часть плоскости в конце оси OY с помощью преобразования [7]
Это преобразование систему (2.1) переводит в систему:
(2.14)
Введем новое время , тогда система (2.14) примет следующий вид:
(2.15)
При z=0, получаем:
(2.16)
Приравнивая второе уравнение системы (2.16) к нулю, получаем
Для исследования состояний равновесий на концах оси OY, необходимо исследовать только точку N3(0,0).
Составим характеристическое уравнение системы (2.16) в точке N3:
соответственно характеристическими числами будут являться
Корни - действительные и одного знака. Следовательно, точка N3(0,0) – устойчивый узел.
Теперь дадим распределение состояний равновесия системы (2.1) в виде таблицы 1.
Таблица 1.
a | О | А | В | С | ∞ | |||||
N1 | N2 | N3 | ||||||||
(-∞;0) | с | У+ | с | У- | У+ | с | У+ | |||
(0;+∞) | с | У- | с | У+ | У+ | с | У+ |
Примечание: через с, у+, у- обозначены соответственно седло, устойчивый узел, неустойчивый узел.
Положение кривых (1.4), (1.18) и расположение относительно их состояний равновесия при a>0 и a<0 дается соответственно рис. 1(а,б).
а) (a>0)
б) (a<0)
Рис.1
2.3 Построение качественной картины поведения траектории в круге Пуанкаре
Поскольку три состояния равновесия A, B, C расположены на интегральных кривых, то вопроса существования предельных циклов вокруг этих точек не возникает.
Начало координат расположено вне интегральных кривых и является седлом с индексом (-1). Предельные циклы могут окружать состояния равновесия с индексом (+1). Отсюда заключаем, что изучаемая система предельных циклов не имеет.
Поведение сепаратрис седла O, B легко выяснить.
Сепаратрисы седла В полностью определяются интегральными кривыми. Сепаратрисы седла О(0,0) однозначно выясняются с помощью изучения поля направления системы на осях координат. Так для а>0 α – сепаратрисы седла О примыкают к точке С и N3, а ω – сепаратрисы примыкают к точке А и N1, а при а<0 -сепаратрисы примыкают к точке А и N1, - сепаратрисы – к точке С и N3.
В результате получаем, что качественная картина исследования траекторий в целом при а>0 определяется рисунком 2а приложения, а при а<0 – рисунком 2б приложения.
ЗАКЛЮЧЕНИЕ
В данной дипломной работе построена квадратичная двумерная стационарная система, имеющая два частных интеграла в виде кривых третьего и первого порядков. При этом коэффициенты кривых выражаются через произвольный параметр системы.
Проведено качественное исследование полученной системы, найдены четыре состояния равновесия, три из которых А, В, С принадлежат интегральным кривым. Исследована бесконечно-удаленная часть плоскости, доказано отсутствия предельных циклов, выяснено поведение сепаратрис седел и построена качественная картина поведения траекторий системы в целом.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
-
Баутин Н.Н. О числе предельных циклов, появляющихся при изменении коэффициентов из состояния равновесия типа фокуса или центра // Матем. сб.- 1952.- Т.30,№1.- 458 с.
-
Баутин Н.Н., Леонтович Е.А. Методы и приемы качественного исследования динамических систем на плоскости.-М.: Наука, 1976.- 274 с.
-
Бендиксон И. О кривых, определяемых дифференциальными уравнениями.- УМН, 1941.- Вып. 9.- 643 с.
-
Биркгоф Дж.Д. Динамические системы. М.-Л.: Гостехиздат, 1941.- 340 с.
-
Воробьев А.П. К вопросу о циклах вокруг особой точки типа “узел” // ДАН БССР.- 1960.- Т.4,№9.- 720 с.
-
Еругин Н.П. Построение всего множества систем дифференциальных уравнений, имеющих заданную интегральную кривую.- ПММ.- 1952.- Т.16, Вып. 6.- с.659-670.
-
Пуанкаре А. О кривых, определяемых дифференциальными уравнениями.- М.-Л.: ГИТТЛ, 1947.- 839 с.
-
Серебрякова Н.Н. Качественное исследование одной системы дифференциальных уравнений теории колебаний.- ПММ.- 1963 Т.27, Вып.1.- 230 с.
-
Филипцов В.Ф. К вопросу алгебраических интегралов одной системы дифференциальных уравнений // Дифференц. уравнения.- 1973.- Т.9,№3.- 256
-
Черкас Л.А. Об алгебраических решениях уравнения
, где P и Q – многочлены второй степени // ДАН БССР.- 1963.- Т.7,№11.- 950 с.
-
Яблонский А.И. Алгебраические интегралы одной системы дифференциальных уравнений // Дифференц. уравнения.- 1970.- Т.6,№10.- с. 1752-1760.
ПРИЛОЖЕНИЕ
Поведение траекторий системы (2.1)
а) (а>0)
б) (а<0)
Рис. 2
0>0>0>0>0>0>