85637 (589848), страница 7

Файл №589848 85637 (Инверсия плоскости в комплексно сопряженных координатах) 7 страница85637 (589848) страница 72016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Если найден центр, то радиус окружности находится как расстояние от прямой до прямой . Для этого заметим, что точка с координатой лежит на прямой . Тогда расстояние от этой точки до прямой равно = = .

Помним, что если мы изменяли радиусы, то решением является и бесконечно удаленная точка, то есть окружность с центром в бесконечно удаленной точке и нулевым радиусом.

Если задана окружность или точка , которую для простоты будем считать окружностью нулевого радиуса, то перенесем в центр этой окружности начало координат с помощью параллельного переноса . В силу касания получаем либо систему , либо систему , где R – радиус искомой окружности – расстояние между параллельными прямыми и , - образ прямой при параллельном переносе. Обе системы легко решаются. ●

Вспомогательная задача 2. Даны две параллельные прямые и окружность, возможно вырожденная, либо прямая. Найти касающуюся всех трех фигур прямую.

○ Пусть заданы две параллельные прямые и . Искомая прямая будет иметь уравнение .

Если дана еще окружность или точка, которую для простоты будем считать окружностью нулевого радиуса, то перенесем в центр этой окружности начало координат с помощью параллельного переноса . Расстояние от центра окружности до искомой прямой должно равняться радиусу окружности, то есть в переобозначенных координатах. Отсюда два значения q, но нужно следить, чтобы прямые не совпали.

Если дана прямая, то если она не параллельна двум другим, то решений нет. Иначе решений бесконечно много, только нужно следить, чтобы прямые не совпали. ●

Алгоритм решения задачи Аполлония может быть таким:

  1. Если все окружности расположены одна в другой, как матрешки (при одновременном выполнении условий3 , и ), то решений нет, иначе:

  2. Определяем две окружности не одна в другой (для них не выполняется неравенство ); если они касающиеся (при или ), то принимаем и выполняем следующий шаг один раз, иначе делаем их касающимися, повторяя для каждого х следующий шаг три раза.

  3. Изменяем радиусы, делая касание; определяем точку касания (ее координата будет равна для касающихся окружностей Si и Sj); выполняем инверсию с центром в этой точке; решаем задачи 1 и 2, снова делаем инверсию; выводим и запоминаем результат, если такого еще нет.

  4. Проверяем результаты на касание. ●

2.2. Применение инверсии при доказательстве. Здесь снова используется тот факт, что зависимость данных и искомых в отображенной фигуре часто гораздо проще, чем в основной фигуре. Замечательно, если в задаче фигурирует окружность: метод дает возможность заменять фигуры, содержащие окружности, более простыми фигурами.

Теорема Птолемея. Для всякого четырехугольника ABCD, вписанного в окружность, верно .

□ Пусть точки A, B, C, D имеют координаты a, b, c, d соответственно.

Примем А за центр инверсии, и пусть степень инверсии равна 1. При этом окружность переходит в прямую. На этой прямой лежат образы точек B, C, D – точки B’, C, D, причем порядок точек сохраняется, поскольку по след 5 сохраняется двойное отношение точек В, В, С, D, а это есть простое отношение трех точек В, С, D. По свойству 3 можно записать: , и .

Из-за сохранения порядка точек верно , то есть . Приведем к общему знаменателю: . Это и означает, что . ■

Обратная теорема. Если для четырех неколлинеарных точек A, B, C, D верно , то они лежат на одной окружности.

□ Равенство можно записать как . Ни одна из точек B, C, D не совпадает с А, так как иначе будет коллинеарность. Тогда это равносильно равенству . Получим при инверсии с центром А и степенью 1. Это значит, что B’, C, D должны лежать на одной прямой и центр инверсии – точка А. При этой инверсии прямая могла быть переведена или из прямой, или из окружности. Никакая другая кривая не могла быть прообразом этой прямой, так как, по инволютивности, эта прямая есть также прообраз этой кривой при той же самой инверсии, то есть эта кривая – окружность или прямая, третьего не дано.

Если это прямая, то она та же самая, и центр инверсии на ней. То есть все точки лежат на одной прямой. Противоречие условию теоремы. Значит, это была не прямая, а окружность. На ней лежат точки B, C, D. Но раз прямая переводится в окружность, то центр инверсии, то есть точка А, расположен на этой окружности. ■

Из этой теоремы следует теорема Пифагора, если четырехугольник является прямоугольником.



Заключение

Необходимо сразу оговориться, что работа не может претендовать на абсолютную полноту изложения данной темы. Однако цели, поставленные в начале работы, достигнуты. Выявлены и систематизированы основные определения и факты, рассмотрены основные виды задач, решаемых с помощью преобразования инверсии.

Интересно было бы рассмотреть симметрию относительно вообще любой плоской кривой, но это уже тема для отдельного исследования.

Дипломная работа может быть полезна студентам и учителям, ведущим факультативные занятия по данной теме. Работа легко может быть преобразована в соответствующую курсовую или дипломную работу по информатике, поскольку необходимые алгоритмы решения задач уже даны, остается только реализовать их на нужном языке программирования.



Библиографический список

  1. Адамар, Ж. Элементарная геометрия [Электронный ресурс]: пособие для высших педагогических учебных заведений и преподавателей средней школы. В 2 ч. Ч. 1. Планиметрия / акад. Ж. Адамар; пер. со 2 издания под ред. проф. Д. И. Перепелкина. – Изд. 3-е. – М.: Учпедгиз, 1948. – 608 с. Режим доступа: http://www.mccme.ru.

  2. Александров, И. И. Сборник геометрических задач на построение [Электронный ресурс] / И. И. Александров; под ред. Н. М. Наумович. – Изд. 18-е. – М.: Учпедгиз, 1950. – 176 с. Режим доступа: http://www.mccme.ru.

  3. Понарин, Я. П. Алгебра комплексных чисел в геометрических задачах [Текст]: Книга для учащихся математических классов школ, учителей и студентов педагогических вузов / Я. П. Понарин. – М.: МЦНМО, 2004. – 160 с.: ил. – ISBN 5-94057-152-2.

  4. Прасолов, В. В. Задачи по планиметрии. [Электронный ресурс] / В. В. Прасолов. – На основе 4-го изд. (М.: МЦНМО, 2001) – М., 2003. – 551 с.: ил. Режим доступа: http://www.mccme.ru.

  5. Яглом, И. М. Геометрические преобразования [Электронный ресурс]. В 2 ч. Ч. 2. Линейные и круговые преобразования / И. М. Яглом. – М.: Гос. изд-во технико-теорет. лит-ры, 1956. – 612 с. – (Серия «Библиотека математического кружка»; вып. 8). Режим доступа: http://www.mccme.ru.

1 Идея этого пункта рассмотрена в [5].

2 Эти свойства сформулированы в виде фактов и теорем в источниках [1], [2], [3], [4], [5].

3 Условия взаимного расположения окружностей даны в источнике [3] на с.88.

Характеристики

Тип файла
Документ
Размер
5,91 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее