85541 (589841), страница 2

Файл №589841 85541 (Возвратные задачи) 2 страница85541 (589841) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

5


Z2 = 7

Z1 = 2


Ломаная линия подобна двум прямым с тем лишь отличием, что области сливаются, если «две» прямые не продолжать после их пересечения:

О бласти 2, 3 и 4, которые были бы разделены при наличии двух прямых, превращаются в единую область в случае одной ломаной линии, т.е. мы теряем две области. И если привести все в надлежащий порядок, то точка излома должна лежать «по ту сторону» пересечений с другими линиями, и мы теряем только две области на одну линию. Таким образом,

Zn = L2n − 2n = = 2n2 −n+1 при n ≥ 0 (4)

Сравнивая решения в замкнутой форме (3) и (4), мы приходим к выводу, что при большом n,

Ln ~ ,

Zn ~ 2n2 ,

так что ломаные линии дают примерно в четыре раза больше областей, чем прямые.

1.3. Задача Иосифа Флавия

Формулировка задачи: в круг выстроено n человек, пронумерованных числами от 1 до n, и исключается каждый второй из оставшихся до тех пор, пока не уцелеет только один человек. Определить номер уцелевшего, J(n).

Н апример, при n = 10 порядок исключения – 2, 4, 6, 8, 10, 3, 7, 1, 9, так что остается номер 5, т.е. J(10) = 5. При n = 2 номер уцелевшего J(2) = 1. Можно было бы предположить, что J(n) = при четном n. Однако это не так – предположение нарушается при n = 4 и n = 6.

N

1

2

3

4

5

6

J(n)

1

1

3

1

3

5

J(n) всегда будет нечетно, т.к. первый обход по кругу исключает все четные номера. К тому же, если само n четно, мы приходим к ситуации, подобной той, с которой начали, за исключением того, что остается вдвое меньше людей, и их номера меняются.

Итак, решим поставленную задачу.

Допустим, что первоначально имеется 2n людей. После первого обхода мы остаемся с номерами:

С ледующий обход будет начинаться с номера 3. Это тоже самое, если бы мы начинали с n людей, за исключением того, что номер каждого уцелевшего удваивается и уменьшается на 1. Тем самым

J(2n) = 2∙J(n) − 1 при n ≥ 1 (5)

Теперь можно быстро продвигаться к большим n. Например, нам известно, что J(10) = 5, поэтому J(20) = 2∙J(10) − 1 = 2∙5 − 1 = 9, аналогично J(40) = 2∙J(20) − 1 = 17, и вообще можно вывести, что

J(5∙2m) = 2m+1+1.

J(5∙2m) = J(2∙2m-1∙5) = 2∙J(2m-1∙5) − 1 = 2∙J(2∙2m-2∙5) − 1 = 22∙J(2m-2∙5)− 21 − 1 = =23∙J(2m-3∙5) − 22 − 21 − 1=24∙J(2m-4∙5) − 23 − 22 − 21 − 1= …= 2m∙J(5) − (2m-1+2m-2+ +…+23+22+21+1) = 2m∙J(5) − = 2m∙3 − 2m + 1 = 2m+1+1.

Теперь посмотрим, что будет в случае, когда имеется 2n+1 людей. После первого обхода жертва с номером 1 уничтожается сразу после жертвы с номером 2n, и мы остаемся с номерами:

П олучили почти первоначальную ситуацию с n людьми, но на этот раз номера уцелевших удваиваются и увеличиваются на 1. Таким образом,

J(2n+1) = 2∙J(n) + 1 при n ≥ 1 (6)

Объединение уравнений (5) и (6) с уравнением J(1)=1 дает рекуррентное соотношение, которое определяет J во всех случаях:

J(1) = 1

J(2n) = 2∙J(n) − 1 при n ≥ 1 (7)

J(2n+1) = 2∙J(n) + 1 при n ≥ 1

Решим данное рекуррентное соотношение. Составим таблицу первых значений J(n):

n

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16

J(n)

1

1 3

1 3 5 7

1 3 5 7 9 11 13 15

1

Если сгруппировать значения n по степеням двойки (в таблице эти группы отделены вертикальными линиями), то в каждой группе J(n) всегда будет начинаться с 1, а затем увеличиваться на 2. Итак, если записать n в виде n = 2m+k, где 2m – наибольшая степень 2, не превосходящая n, а k – то, что остается, то решение рекуррентного соотношения должно иметь вид:

J(2m+k) = 2k+1 при m ≥ 0 и 0 ≤ k < 2m (8)

(Если 2m ≤ n < 2m+1, то остаток k = n−2m удовлетворяет неравенству 2m≤k+2m<2m+1, т.е. 0 ≤ k < 2m)

Докажем (8) методом математической индукции по m.

  1. База: m = 0 => k = 0

J(20+0) = J(1) = 2∙0 + 1 = 1 (верно);

  1. Индуктивный переход: пусть верно для всех чисел t ≤ (m − 1). Докажем для t=m:

  1. если m > 0 и 2m+k=2n, то k – четно и J(2m+k) = J(2(2m-1+ )) = 2∙J(2m-1+ ) − 1 2(2∙ + 1) −1 = 2k + 1

  2. если m > 0 и 2m+k=2n+1, то k – нечетно (т.е. k=2t+1) и J(2m+k) = = J(2m+(2t+1)) = J(2(2m-1+t) +1) 2∙J(2m-1+ t) + 1 2(2t+1) + 1 = 2k + 1

Другой способ доказательства, когда k – нечетно:

Можно заметить, что J(2n+1) − J(2n) = 2, тогда J(2m+k) = 2 + J(2m + (k− −1)) J(2m+k) = 2 + 2(k −1) + 1 => J(2m+k) = 2k+1.

Из пунктов 1 и 2 следует: при m ≥ 0 и 0 ≤ k < 2m J(2m+k) = 2k+1.

Решение всякой задачи может быть обобщено так, что его можно применить к более широкому кругу задач. Поэтому изучим решение (8) и исследуем некоторые обобщения рекуррентного соотношения (7).

Обратимся к двоичным представлениям величин n и J(n) (т.к. степени 2 играли важную роль в нашем поиске решения).

n = (bm bm-1 … b1 b0)2 ;

т.е. n = bm2m + bm-12m-1 + … + b12 + b0

где каждое bi равно 0 или 1, причем старший бит bm равен 1. Вспоминая, что n=2m+k, последовательно получаем:

n = (1 bm-1 … b1 b0)2

k = (0 bm-1 … b1 b0)2

(т.к. k= n−2m = 2m + bm-12m-1 + … + b12 + b0 − 2m = 0∙2m + bm-12m-1 + …+ b12 + b0)

2k = (bm-1 … b1 b0 0)2

(т.к. 2 k=2(bm-12m-1 +bm-22m-2 …+ b12 + b0)=bm-12m + bm-22m-1 + … + b122 + b02+0)

2k+1 = (bm-1 … b1 b0 1)2

J(n) = (bm-1 … b1 b0 bm)2

(т.к. J(n) = 2k+1 и bm = 1)

Таким образом, мы получили, что

J((bm bm-1 … b1 b0)2) = (bm-1 … b1 b0 bm)2 (9)

т.е. J(n) получается путем циклического сдвига двоичного представления n влево на один сдвиг.

Рассмотрим свойства функции J(n).

Если мы начнем с n и итерируем J-функцию m+1 раз, то тем самым осуществляем циклический сдвиг на m+1 битов, а т.к. n является (m+1)-битовым числом, то мы могли бы рассчитывать в итоге снова получить n. Но это не совсем так. К примеру, если n = 27, то J(11011) = ((10111)2), но затем J(10111) = ((1111)2), и процесс обрывается: когда 0 становится старшим битом – он пропадает (т.к. принято, что коэффициент при старшей степени не равен 0). В действительности J(n) всегда должно быть ≤ n по определению, т.к. J(n) есть номер уцелевшего; и если J(n) < n, мы никогда не сможем получить снова n в следующих итерациях.

Многократное применение J порождает последовательность убывающих значений, достигающих, в конце концов «неподвижной точки» n, такой, что J(n)=n. Докажем, что J порождает последовательность убывающих значений, т.е. покажем, что 2n > 2n-1 + 2n-2 +…+21 + 1 при n ≥ 1.

Докажем методом математической индукции по n:

1) База: n=1, 21 > 20 (верно);

2) Индуктивный переход: пусть верно для всех чисел t ≤ (n–1) , т.е. выполняется неравенство 2t-1 > 2t-2 + 2t-3 +…+21 + 1. Докажем для t=n:

(2n-1 > 2n-2 + 2n-3 +…+21 + 1) умножим на 2, получим 2n > 2n-1 + 2n-2 +…+22 + 21. Левая и правая части неравенства четные числа, тогда между ними есть хотя бы одно нечетное число, следовательно, прибавление 1 к правой части неравенства (четное число +1 = нечетное число) неравенство не изменит. Т.о. получаем нужное нам неравенство: 2n > 2n-1 + 2n-2 +…+21 + 1 при n ≥ 1.

С войство циклического сдвига позволяет выяснить, чем будет «неподвижная точка»: итерирование функции m и более раз всегда будет порождать набор из одних единиц со значением , где ν(n) – число равных 1 битов в двоичном представлении n (это следует из того, что имеем последовательность 20 , 21 , 22 ,…,2n-1, 2n, и по формуле суммы геометрической прогрессии получаем ). Так, например: ν(27) = ν(11011) = 4, тогда J(J(…J(27)…)) =24 −1=15

2 и более


Теперь давайте вернемся к нашему первоначальному предположению, что J(n) = при четном n. Вообще-то это неверно, но мы выясним, когда это верно: J(n) = , тогда 2k+1 = => k = . Если число k = = целое, то n= 2m + k будет решением, т.к. k < 2m. Нетрудно убедиться, что (2m − 2) кратно 3, когда m нечетно, но не когда m четно. Действительно, если m – нечетно, то 2m − 2 = 22k+1 − 2 = 2(4k − 1). Докажем методом математической индукции, что (4k − 1) делится на три (где ):

1) База: k=1, 4−1=3, три делится на три (верно);

2) Индуктивный переход: пусть верно для всех чисел t ≤(k−1), т.е (4t−1) делится на три. Докажем для t=k:

4k − 1 = 4(4k-1 − 1) + 3 (4k-1 − 1) делится на три, и 3 делится на три => (4к−1) делится на три.

Таким образом, показали, что для m – нечетного (2m − 2) делится на 3.

Теперь покажем, что при m – четном (2m − 2) не делится на 3. Предположим противное: пусть (2m − 2) делится на 3 при четном m, тогда , числа 2 и 3 взаимнопростые, следовательно, ( ) должно делится на 3, т.е. =3q , но , a , т.е. получили, что , а это не верно. Следовательно, наше предположение не верно и 2m − 2 не делится на 3 при четном m.

Таким образом, имеем бесконечно много решений уравнения J(n) = , и первые такие:

m

k

N= 2m + k

J(n) =2k+1=

n (двоичное)

1

0

2

1

10

3

2

10

5

1010

5

10

42

21

101010

7

42

170

85

10101010

Правый крайний столбец содержит двоичные числа, циклический сдвиг которых на одно позицию влево дает тот же самый результат, что и обычный сдвиг на одну позицию вправо (деление пополам).

Далее обобщим J - функцию, т.е. рассмотрим рекуррентность схожую с (7), но с другими константами: α, β и γ; найдем решение в замкнутой форме.

Характеристики

Тип файла
Документ
Размер
3,99 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее