85255 (589832), страница 3
Текст из файла (страница 3)
("0 до 2"/0.188 , "2 до 5"/0.420 , "5 до 10"/0.352 , "10 до 15"/ 0.037, "свыше 15"/0.003)
скорость ветра на высоте 500 м (11.4 м/с):
("0 до 2"/0.061 , "2 до 5"/0.125 , "5 до 10"/0.336 , "10 до 15"/ 0.241, "свыше 15"/0.237)
скорость ветра на высоте от 1000 м (11.3 м/с):
("0 до 2"/0.073 , "2 до 5"/0.114 , "5 до 10"/0.290 , "10 до 15"/ 0.280, "свыше 15"/0.243)
скорость ветра на высоте от 1500 м (11.6 м/с):
("0 до 2"/0.087 , "2 до 5"/0.076 , "5 до 10"/0.276 , "10 до 15"/ 0.306, "свыше 15"/0.255)
Среднегодовые скорости ветра (среднее значение):
скорость ветра на высоте от 40 до 120 м (4.7 м/с):
("0 до 2"/0.214 , "2 до 5"/0.442 , "5 до 10"/0.316 , "10 до 15"/ 0.026, "свыше 15"/0.002)
скорость ветра на высоте 500 м (8.9 м/с):
("0 до 2"/0.117 , "2 до 5"/0.194 , "5 до 10"/0.370 , "10 до 15"/ 0.187, "свыше 15"/0.132)
скорость ветра на высоте 1000 м (9.2 м/с):
("0 до 2"/0.110 , "2 до 5"/0.183 , "5 до 10"/0.336 , "10 до 15"/ 0.225, "свыше 15"/0.146)
скорость ветра на высоте 1500 м (9.4 м/с):
("0 до 2"/0.126 , "2 до 5"/0.168 , "5 до 10"/0.284 , "10 до 15"/ 0.274, "свыше 15"/0.148)
Как видно из этих данных, начиная с высоты 500 метров скорость ветра мало изменяется, значит, эту величину можно принять в качестве толщины пограничного слоя. Рассматриваемая область имеет прямоугольную форму с выпуклостью на нижней границе - трамплинной горой.
Контрольный счет проводился при следующих граничных условиях:
во входном сечении: (16)
в выходном сечении: (17)
на верхней границе: (18)
на нижней границе: (19)
Рассматриваются достаточно малые скорости, так как при сильном ветре прыжки запрещены. Малость скоростей позволяет пренебречь конвективными членами и считать течение ламинарным. Силой тяжести на данном этапе мы также пренебрегаем. Надо сказать, что мы сознаем некоторую натянутость такой постановки, в следующей работе эта задача будет решена уже с учетом и конвективного члена, и силы тяжести.
4.2. Математическая постановка
Течение вязкой несжимаемой жидкости описывается следующими уравнениями [7]:
(20)
Для двумерной постановки эти уравнения приводятся к следующему виду:
(21)
Согласно [8] для описания сжимаемых жидкостей первое уравнение из (21) может быть заменено на следующее: , однако так как в данной работе рассматривается стационарное течение, то производная по времени равна нулю, и это соотношение приобретает вид, идентичный условию несжимаемости.
Задача решалась с граничными условиями (16)-(19).
В качестве области брался прямоугольник с выступом в виде трамплинной горы. Сам трамплин достаточно узок, и не вносит существенного вклада в формирование воздушного потока, поэтому он не рассматривается. Трамплинная гора состоит из участка необработанного склона - дуги окружности с известным радиусом кривизны, длиной и высотой, участка обработанного склона, предназначенного для приземления лыжников - прямой с известным углом к горизонтали и длиной и закругления с известным радиусом для безопасности тех, кто улетает за пределы допустимой дальности.
4.3. Численное решение
Задача решалась методом Галеркина в терминах скорость-давление. Метод конечных элементов был использован, так как он позволяет более точно, чем метод сеток, аппроксимировать границы области. Задача решалась в естественных переменных для простоты удовлетворения граничным условиям. Для решения задачи была составлена программа, основными частями которой были разбиение области на конечные элементы, составление и решение системы уравнений. Система уравнений имеет ленточный вид, что позволило значительно увеличить количество конечных элементов. В программе была использована линейная аппроксимация скоростей и кусочно-постоянная аппроксимация давления. Дело в том, что в [7] показано, что наибольшая точность и устойчивость метода конечных элементов для подобных задач достигается, если аппроксимация скоростей на порядок выше аппроксимации давлений. Для давлений использовались четырехугольные конечные элементы, делившиеся для скоростей на два треугольных.
Рис. 8.
Конечноэлементная сетка, использовавшаяся при решении задачи.
Показаны только четырехугольные элементы.
4.4. Результаты
При перепаде давлений между входным и выходным сечениями расчетной области 2 10-6 мм рт. ст. (около 4
10-4 Па) скорость ветра на верхней границе составила примерно 11 м/с, а на высоте, где обычно летают лыжники - около 5 м/с, что вполне согласуется с приведенными выше опытными данными.
Задача решалась при различных граничных условиях, что позволило выяснить, как влияет на расчет заданный перепад давлений или заданная входная скорость. Оказалось, что задав силовое граничное условие - перепад давлений - получаем такие скорости, что если задать их в качестве кинематических граничных условий, получается тот же перепад давлений, что и в первой задаче.
Из рисунка 9 видно, что во входном и в выходном участках области скорость ветра строго горизонтальна, а в районе горы имеет вертикальную составляющую, так как воздушный поток огибает гору. На рисунке 10, показывающем распределение поля давлений, видно, что давление над горой ниже, чем под горой, что и является причиной восходящего (огибающего гору) тока воздуха.
Рис.9
Поле скоростей ветра в окрестностях горы.
5. Расчет полета лыжника
Задача Коши (7),(14),(15),(8) решалась методом Гаусса решения систем дифференциальных уравнений.
Траекторию при заданных уравнениях движения и трамплине определяют три "входных" патаметра: начальная скорость , поддерживаемый в полете угол между лыжами и горизонталью
и предельная скорость
. После решения задачи Коши мы можем определить два "выходных" параметра задачи - составляющую посадочной скорости, нормальную к склону
и дальность
.
Далее для краткости будет называться просто скоростью приземления.
Исследовалась сходимость решения по интегральной и максимальной норме. Кроме этого проводилось еще две проверки, имеющих более простой и наглядный смысл. Их результаты здесь и приведены. Сравнение получающихся дальностей и скоростей приземления показало, что при заданном шаге по времени с дальность отличается по сравнению с решением с точностью
с на величину порядка
м, то есть у решений с шагами 0.001 с и 0.0001 с отличие в дальности имеет порядок нескольких миллиметров - в пределах одного сантиметра, т.е. 0.01 м. Численно отличие между скоростями приземления меньше в 2-3 раза, чем между дальностями. Так как точности выше 1 см и 1 см/с нам не нужны, все дальнейшие расчеты проводились с шагом по времени 0.001 с. Второй проверкой была такая: при отключении условия окончания вычислений по прошествии достаточно большого времени скорость падения становилась постоянной и равной предельной скорости. Оказалось, что значения выходных параметров достаточно жестко определяют, какими могут быть входные параметры. Это обусловлено не только узостью интервала допустимых скоростей приземления и длиной участка склона приземления, но и узостью интервалов изменения входных параметров. Вычислительный эксперимент проводился на параметрах нижне-тагильского трамплина. Входные параметры должны удовлетворять следующим условиям:
-
м/с
-
м/с
-
На рис.11 видны траектории полета прыгуна при , фиксированной предельной скорости и слегка отличающихся начальных скоростях.
Рис.11. Траектории полета лыжника при различных скоростях вылета
Рис.12. Зависимость дальности полета от начальной скорости при различных предельных скоростях.
Рис.13. Зависимость нормальной к склону составляющей скорости приземления от начальной скорости при различных предельных скоростях.
Рис.14. Допустимая зона изменения предельной и начальной скоростей при фиксированном угле наклона лыж к горизонту
Рис.15. Допустимая зона изменения предельной и начальной скоростей при фиксированном угле наклона лыж к горизонту .
Из рис.12-13 видно, что чем больше дальность полета, тем более жестким будет приземление. При уменьшении предельной скорости для достижения той же дальности нужна меньшая начальная скорость, то есть преимущество получают прыгуны, имеющие большую "парусность". Из рис.14-15 видно, что угол лыж 20 предпочтительнее, чем угол 30, так как при нем можно стартовать с меньшими скоростями и с меньшим риском. Таким образом, наилучшие прыжки получаются при как можно больших начальных скоростях (разумеется, в пределах допустимой области) и как можно меньших предельных скоростях и углах .
При учете ветра оказалось, что уже при скоростях ветра порядка 1 м/с при встречном ветре лыжник имеет большой шанс недолететь до участка приземления, а при попутном - перелететь через него. Видимо, поэтому соревнования по прыжкам с трамплина не проводятся при ветре.
6. Заключение
Построена математическая модель прыжка с трамплина, учитывающая все основные факторы, влияющие на полет лыжника, включая ветер вблизи трамплинной горы и зависимость аэродинамических коэффициентов от угла атаки.
Определена область изменения параметров прыжка, обеспечивающая безопасное приземление.
Решена задача обтекания трамплинной горы потоком воздуха. Составленная модель отображает основные физические закономерности рассматриваемого явления как то возникновение ветра под действием перепада давлений, увеличение скорости ветра под действием высотных ветров, поворот воздушного потока вспять при задании отрицательных скоростей на границах рассматриваемой области или отрицательного перепада давлений и т.д.
В дальнейшем планируется:
1. Исследовать влияние стартового толчка на результаты прыжка;
2. Провести более точный анализ аэродинамических коэффициентов, основанный на математической модели обтекания системы прыгун-лыжи потоком воздуха;
3. Поставить задачу оптимизации параметров прыжка и решить с применением прнципа максимума Понтрягина аналогично работам [2,3], но с учетом ограничения на скорость приземления;
4. Решить нестационарную задачу обтекания горы потоком воздуха: если даже небольшой постоянный ветер приводит к сносу в десятки метров, может, допустимыми окажутся небольшие порывы ветра.
{$E+}{$N+}
{ П р ы ж о к с т р а м п л и н а