63796 (589054), страница 2
Текст из файла (страница 2)
Рис. 1.5 – Шифрование файла
При расшифровке файла сначала с помощью долговременного ключа пользователя расшифровывается сеансовый ключ, а затем с его помощью восстанавливается информация.
Преимущества многоуровневой ключевой схемы:
-
снижается нагрузка на долговременный ключ - он используется только для шифрования коротких сеансовых ключей; это усложняет потенциальному злоумышленнику криптоанализ зашифрованной информации с целью получения долговременного ключа.
-
при смене долговременного ключа можно быстро перешифровать файл: достаточно перешифровать сеансовый ключ со старого долговременного на новый.
-
разгружается ключевой носитель - на нем хранится только главный ключ, а все долговременные ключи могут храниться в зашифрованном с помощью главного ключа виде даже на жестком диске ПК.
-
Хэширование паролей
При разработке любого криптоалгоритма следует учитывать, что в половине случаев конечным пользователем системы является человек, а не автоматическая система. Необходимо принимать во внимание тот факт, что пользователю придется запоминать ключ длиной до 4096 битов (512 ASCII символов), а предел запоминаемости чисел человеческим мозгом лежит на границе 12-15 символов [1].
Для решения этой проблемы были разработаны методы, преобразующие осмысленную строку произвольной длины – пароль, в указанный ключ заранее заданной длины. Для этой операции используются хэш-функции (от англ. hashing – мелкая нарезка и перемешивание).
Хэш-функцией называется такое математическое или алгоритмическое преобразование заданного блока данных, которое обладает следующими свойствами:
-
бесконечная область определения;
-
конечная область значений;
-
необратимость;
-
лавинный эффект (изменение входного потока информации на один бит меняет около половины всех бит выходного потока);
Эти свойства позволяют подавать на вход хэш-функции пароли произвольной длины и, ограничив область значений функции диапазоном 0..2N-1, где N – длина ключа в битах, получать на выходе достаточно равномерно распределенные по области значения блоки информации – ключи.
Размер пароля ограничен исключительно используемым алгоритмом хэширования. Например, при использовании хэш-функции SHA2, с длиной результата в 384 бита, на вход можно подавать число меньшее бита. Если пароль – строка ASCII символов, то длина пароля в этом случае ограничена
символами. Это значит, что паролем могут быть строки текста, цитаты или стихотворения, что значительно улучшает запоминание пароля.
-
Длина ключа, используемого в криптосистеме
Любой шифровальный алгоритм с использованием ключа, может быть вскрыт методом перебора всех значений ключа. Если ключ подбирается методом грубой силы (brute force), требуемая мощность компьютера растет экспоненциально с увеличением длины ключа. Ключ длиной в 32 бита требует для вскрытия шагов. Системы с 40-битным ключом требуют
шагов. Системы с 56-битными ключами могут быть легко вскрыты с помощью специальной аппаратуры (используя суперкомпьютер стоимостью 250 тыс. долларов, сотрудники RSA Laboratory "взломали" утвержденный правительством США алгоритм шифрования данных DES менее чем за три дня - рис.1.6). Полный перебор ключа длиной 64 бита для RC5 в настоящее время продолжается. Ключи длиной 80 бит могут в будущем стать уязвимыми. Ключи длиной 128 бит вероятно останутся недоступными для вскрытия методом грубой силы в обозримом будущем. Можно использовать и более длинные ключи.
Рис. 1.6 – Микропроцессор и плата суперкомпьютера DES Cracker
Длины ключей, используемых в криптографии с открытым ключом обычно значительно больше, чем в симметричных алгоритмах. Здесь проблема заключается не в подборе ключа, а в воссоздании секретного ключа по открытому. В алгоритме RSA проблема эквивалентна разложению на множители большого целого числа, которое является произведением пары неизвестных простых чисел. В случае других криптосистем (DSA, Эльгамаль), проблема эквивалентна вычислению дискретного логарифма по модулю большого целого числа (такая задача считается примерно аналогичной по трудности задаче разложения на множители).
В 2007 году, группа Швейцарских ученых под руководством Арьена Ленстра осуществила факторизацию 700 битного ключа. Арьен Ленстра считает, что взлом 1024 битного RSA шифра станет возможным через 5-10 лет. Ключи длиной в 2048 и 4096 бит, криптоаналитики считают надежными на десятилетия.
Для создания надежной криптосистемы, специалисты в области криптографии, в частности Брюс Шнайер [1], рекомендуют использовать 256 битный ключ для симметричных алгоритмов и 2048 бит для алгоритмов с открытым ключом.
-
Проблемы, возникающие при шифровании файлов
Особенности шифрования файлов, о которых необходимо помнить вне зависимости от применяемого криптографического алгоритма:
-
после шифрования файла его незашифрованная копия может остаться на магнитном диске, другом компьютере или в виде распечатки;
-
размер блока в блочном алгоритме шифрования может значительно превышать размер отдельной порции данных в структурированном файле, в результате чего зашифрованный файл окажется намного длиннее исходного;
-
если пользователь использует один и тот же ключ для шифрования всех файлов, то в результате у криптоаналитика будет много шифротекста, полученного на одном ключе, что существенно облегчит вскрытие этого ключа.
Лучше шифровать каждый файл на отдельном ключе, а затем зашифровать ключи при помощи мастер ключа. Пользователи будут избавлены от суеты, связанной с организацией надежного хранения множества ключей, т.к. разграничение доступа к различным файлам будет осуществляться путем деления множества всех сеансовых ключей на подмножества и шифрования этих подмножеств на различных мастер-ключах.
Ключи, применяемые для шифрования файлов, необходимо генерировать случайным образом. Это увеличит защищенность криптосистемы.
-
Выбор алгоритма шифрования
Криптографический алгоритм, также называемый шифром или алгоритмом шифрования, представляет собой математическую функцию, используемую для шифрования и расшифровки.
Алгоритм шифрования называется ограниченным, если надежность криптографического алгоритма обеспечивается за счет сохранения в тайне сути самого алгоритма.
Ограниченные алгоритмы непригодны при современных требованиях, предъявляемых к шифрованию, потому что:
-
каждая группа пользователей, желающих обмениваться секретными сообщениями, должна разработать оригинальный алгоритм шифрования;
-
невозможно применение готового оборудования и стандартных программ;
-
необходимо разрабатывать собственный криптографический алгоритм, каждый раз, когда кто-то из пользователей группы захочет ее покинуть или когда детали алгоритма случайно станут известны посторонним.
В криптографии, описанные проблемы решаются при помощи использования ключа, который обозначается буквой «К» (от английского слова key). Ключ должен выбираться среди значений, принадлежащих множеству, которое называется ключевым пространством. И функция шифрования «Е», и функция расшифровки «D» зависят от ключа. Этот факт выражается присутствием «К» в качестве подстрочного индекса у функций «Е» и «D»:
Е к (Р) = С (1.1)
D к (С) = Р (1.2)
Справедливо следующее тождество:
D k (E k (P)) = P (1.3)
Некоторые алгоритмы шифрования используют различные ключи для шифрования и расшифровки. Это означает, что ключ шифрования «К1 » отличается от ключа расшифровки «К2 ». В этом случае справедливы следующие соотношения:
Е k1 ( P ) = С (1.4)
D k2 (С) = Р (1.5)
D k2 (E k1 (Р) ) = Р (1.6)
Надежность алгоритма шифрования с использованием ключей достигается за счет их надлежащего выбора и последующего хранения в секрете. Это означает, что такой алгоритм не требуется держать в тайне. Знание криптографического алгоритма не позволит злоумышленнику прочесть зашифрованные сообщения, поскольку он не знает секретный ключ, использованный для их шифрования.
Под криптосистемой понимается алгоритм шифрования, а также можно всевозможных ключей, открытых и шифрованных текстов.
Существуют две разновидности алгоритмов шифрования с использованием ключей — симметричные и с открытым ключом.
-
Симметричные алгоритмы шифрования
Симметричным называют криптографический алгоритм, в котором ключ, используемый для шифрования сообщений, может быть получен из ключа для расшифровки и наоборот. Одноключевыми или алгоритмами с секретным ключом называются симметричные алгоритмы, в которых применяют всего один ключ и требуют, чтобы отправитель сообщений и их получатель условились о том, каким ключом они будут пользоваться. Надежность одноключевого алгоритма определяется выбором ключа, поскольку его значение дает возможность злоумышленнику без помех расшифровывать все перехваченные сообщения. Поэтому выбранный ключ следует хранить в тайне от посторонних.
Симметричные алгоритмы шифрования бывают двух видов. Одни из них обрабатывают открытый текст побитно. Они называются потоковыми алгоритмами, или потоковыми шифрами. Согласно другим, открытый текст разбивается на блоки, состоящие из нескольких бит. Такие алгоритмы блочными шифрами. В современных компьютерных алгоритмах блочного шифрования обычно длина блока составляет 64 бита или 128 бит.
-
Блочные алгоритмы
Тройной DES
Базовый алгоритм DES был разработан фирмой IBM в середине 1970-х годов. Через несколько лет, DES был принят в качестве государственного стандарта шифрования США. Тройной DES - это вариация DES, в которой базовый алгоритм выполняется трижды на одном блоке данных. Длина общего ключа – 168 бит (в DES – 56 бит). Алгоритм оперирует 64-битовыми блоками данных. Расчётная стойкость такого алгоритма к лобовой атаке составляет 112 бит.
AES
"Улучшенный стандарт шифрования" (Advanced Encryption Standard). Алгоритм принят национальным институтом стандартов и технологий (NIST) США в 1999 году в качестве стандарта шифрования важных несекретных коммуникаций. Пришел на смену устаревшему DES. Авторское название – Rijndael ("Рэндал"). Это блочный шифр со 128-, 192- или 256-битовым размером ключа и 128-битовым блоком.
AES подвергся тщательному исследованию государственного и гражданского криптологического сообщества. Rijndael обладает простым дизайном, облегчающему его реализацию, малым размером исполняемого кода и нетребователен к объему памяти.
CAST
Представляет собой шифр со 128-битовым ключом и 64-битовым блоком. Дизайн основан на формальной архитектуре DES с доказанной стойкостью. Не имеет слабых ключей. Алгоритм совершенно устойчив к линейному и дифференциальному криптоанализу. Может быть взломан только методом прямого перебора.
S-блоки, используемые в алгоритме для противодействия дифференциальному криптоанализу, не являются фиксированными и не зависят от ключа, но проектируются индивидуально для каждого приложения, используя специальные инструкции авторов шифра. Канада, где был разработан алгоритм, использует его в качестве государственного стандарта шифрования.
Twofish
Один из пяти финалистов на звание AES. Группу разработчиков возглавлял Брюс Шнайер. В реализации использует 256-битовый ключ и 128-битовый блок данных.
Twofish оказался самым стойким в исследовании, хотя и одним из самых медленных. Однако скорость обычно играет решающую роль только в приложениях реального времени, к которым шифрование файлов и почты не относится.
Blowfish
Автором алгоритма является Брюс Шнайер. Алгоритм представляет собой блочный шифр с ключом переменной длины (вплоть до 448 бит), оперирующий на 64-битовых блоках.