193234 (589031), страница 9
Текст из файла (страница 9)
Оперируя этими понятиями можно судить о надежностных характеристиках изделия. Итак, произведем расчет надежности, приняв следующие допущения:
- отказы случайны и независимы;
- учитываются только внезапные отказы;
- имеет место экспоненциальный закон надежности.
Последнее допущение основано на том, что для аппаратуры, в которой имеют место только случайные отказы, действует экспоненциальный закон распределения - закон Пуассона - и вероятность работы в течение времени равна:
(5.4.5)
Учитывая то что с точки зрения надежности все основные функциональные узлы и элементы в изделии соединены последовательно и значения их надежностей не зависят друг от друга, т.е. выход из строя одного элемента не меняет надежности другого и приводит к внезапному отказу изделия, то надежность изделия в целом определяется как произведение значений надежности для отдельных
элементов:
(5.4.6)
где
- интенсивность отказов
- го элемента с учетом режима и условий работы,
.
Учет влияния режима работы и условий эксплуатации изделия при расчетах производится с помощью поправочного коэффициента
- коэффициента эксплуатации и тогда
выразится как:
(5.4.8)
где
- интенсивность отказов
- го элемента при лабораторных условиях работы и коэффициенте электрической нагрузки
.
Для точной оценки
нужно учитывать несколько внешних и внутренних факторов: температуру корпусов элементов; относительную влажность; уровень вибрации, передаваемый на элементы и т.д. С этой целью может быть использовано следующее выражение:
, (5.4.9)
где
- поправочный коэффициент, учитывающий
- ый фактор;
- поправочный коэффициент, учитывающий влияние температуры;
- поправочный коэффициент, учитывающий влияние электрической нагрузки;
- поправочный коэффициент, учитывающий влияние влажности;
- поправочный коэффициент, учитывающий влияние механических воздействий.
Все
определяются из справочных зависимостей и таблиц, где они приведены в виде
и
, как объединенные
с
и
с
.
После этого можно определить значение суммарной интенсивности отказов элементов изделия по формуле:
, (5.4.10)
где
- число элементов в группе,
;
- интенсивность отказа элементов в
-ой группе,
;
- коэффициент эксплуатации элементов в
-ой группе;
- общее число групп.
Исходные данные по группам элементов, необходимые для расчета показателей надежности приведены в таблице 5.4.2.
Таблица 5.4.2 - Справочные и расчетные данные об элементах конструкции
| | Наименование Группы | | | | | | | ч | |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | Конденсаторы керамические | 16 | 0.15 | 0.35 | 1.07 | 0.38 | 0.97 | 1.1 | 5,54 |
| 2 | Аналоговые микросхемы | 2 | 0.02 | 0.7 | 1.07 | 0.75 | 0.05 | 0.5 | 0.28 |
| 3 | Цифровые микросхемы | 5 | 0.02 | 0.7 | 1.07 | 0.75 | 0.50 | 0.5 | 3.07 |
| 4 | Разъем многоштырьковый (9 штырей) | 2 | 3.2 | 0.7 | 1.07 | 0.75 | 4.8 | 1.2 | 27.4 |
| 5 | Соединения пайкой | 795 | 0.01 | 0.8 | 1.07 | 0.86 | 7.1 | 1.2 | 40.6 |
| 7 | Плата печатная | 1 | 0.2 | 0.6 | 1.07 | 0.64 | 0.13 | 3.2 | 0,74 |
Воспользовавшись данными таблицы 5.4.2 по формуле (5.4.10) можно определить суммарную интенсивность отказов
,
1/час.
Далее найдем среднюю наработку на отказ
, применив следующую формулу:
(5.4.11)
Итак, имеем:
часов.
Вероятность безотказной работы определяется исходя из формулы (5.4.12), приведенной к следующему виду:
, (5.4.13)
где
часов - заданное по ТЗ время безотказной работы.
Итак, имеем:
Среднее время восстановления определяется последующей формуле:
, (5.4.14)
где
- вероятность отказа элемента i-ой группы;
- случайное время восстановления элемента i-ой группы, приближенные значения которого указаны в таблице 5.4.2.
Подставив значения в формулу (5.4.9), получим среднее время восстановления
=1.059ч.
Далее можно определить вероятность восстановления по формуле:
, (5.4.14)
где
=6.4ч.
Следовательно, по формуле (5.4.14) определим
, что больше
.
Таким образом, полученные данные удовлетворяют требованиям ТЗ по надежности, так как при заданном времени непрерывной работы
ч проектируемый блок будет работать с вероятностью
. При этом он будет иметь среднюю наработку на отказ
ч и вероятность восстановления,
следовательно, дополнительных мер по повышению надежности разрабатываемого устройства не требуется.
5.5 Описание конструкции модуля
Устройство смонтировано на шасси из пластмассы. Лицевая и задняя панель выполнена съёмной. Корпус состоит из двух частей, крепящихся винтами..
Марки материалов, разрешенных к применению в данной отрасли промышленности регламентируется ведомственными нормами. На предприятиях существует более узкое ограничение марок материалов и сортаментов из числа разрешенных к применению ведомостной нормалью. Материалы, не вошедшие в перечень рекомендуемых, допускается применять в технически обоснованных случаях с разрешения органов стандартизации на предприятиях.
Металлические детали проектируемого нашего прибора за отдельным исключением можно изготовить механической обработкой материалов, поставляемых металлургической промышленностью в виде прутков, полос, ленты и листов. Однако целесообразно использование стандартных винтов крепления.
Технологические процессы, основанные на использовании способов прессования, обладают следующими основными преимуществами:
- более высокая производительность;
- меньший расход металла;
- меньшее количество операций и меньшая производительность производственного цикла;
- относительно постоянная и высокая степень точности, зависящая в основном от точности изготовления инструмента и в меньшей степени от мастерства рабочего;
- благоприятные условия для механизации и автоматизации технологического процесса и для перехода на многостаночное обслуживание;
- в большинстве случаев - экономия производственной площади.
Выбор марки материала и заготовки имеет важное значение, так как определяет расход материала, трудоемкость процесса изготовления детали, конструкцию технологической оснастки и в конечном счете себестоимость детали.
Важным показателем целесообразности выбора того или иного вида заготовки является коэффициент использования материала:
К = Qд/Qз,, (5.5.1)
где Qд - вес готовой детали;
Qз - вес заготовки.
Большинство деталей в проектируемом устройстве сделаны методом горячей штамповки. Она обладает рядом преимуществ перед другими видами обработки материалов:
- простота технологического процесса;
- высокая производительность, позволяющая на большой площади при малом количестве единиц оборудования изготовить в короткие сроки большое количество деталей;
- относительная и абсолютная дешевизна деталей;
- возможность комбинирования с другими видами технологических процессов;
- достаточная точность.
1/ч














