62910 (588855), страница 3

Файл №588855 62910 (Разработка блока управления фотоприёмником для волоконно-оптических систем передачи информации) 3 страница62910 (588855) страница 32016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

– рабочая длина волны, для которой нормированы параметры премного оптического модуля;

– полоса пропускания, то есть интервал частот, в котором модуль коэффициента передачи больше или равен половине его максимального значения;

– напряжение шума, то есть среднеквадратичного значения флуктуации выходного напряжения в заданной полосе частот в отсутствие оптического сигнала на его входном оптическом торце;

– отношение сигнал/шум – отношение амплитуды переменной составляющей выходного напряжения при заданных характеристиках принимаемого оптического сигнала к среднеквадратичному значению флуктуаций выходного напряжения при приеме немодулированного оптического излучения той же средней мощности;

– порог чувствительности – минимальная средняя мощность оптического сигнала на входе при заданных характеристиках этого сигнала, при котором обеспечивается заданное отношение сигнал/шум или заданный коэффициент ошибок. Усреднение обычно производится в течении интервала времени во много раз превышающего период модулирующей частоты или длительности светового импульса.

Фотоприемные устройства также должны позволять осуществлять стыковку с каналообразующей или другой оконечной аппаратурой.

Вместе с тем, в ВОСПИ возникают специфические помехи, связанные с распространением сигналов по световодам.

Режимы работы ФПУ ВОСПИ существенно отличаются от режимов ФПУ, применяемых в атмосферной связи или оптической локации. Главное отличие состоит в стабилизации канала и отсутствии фоновой засветки.

Техника фотоприемных устройств развивается в направлениях повышения быстродействия, освоения новых спектральных диапазонов, совершенствования технологии изготовления, конструкции и улучшения основных параметров в соответствии с приведенными требованиями.

2. Выбор и обоснование структурной схемы

ФПУ является составной частью линейного тракта и служит связующим звеном между ВОК и приемником.

Фотодиоды изготавливаются из разных материалов. Рабочие диапазоны длин волн, в которых достигается максимальная эффективность фотодиодов для разных полупроводниковых материалов, приведены в табл. 2.1.

Таблица 2.1 – Рабочие диапазоны длин волн

Материал

Диапазон принимаемых длин волн λ, нм

Кремний

400–1000

Германий

600–1600

GaAs

800–1000

InGaAs

1000–1700

InCaAsP

1100–1600

Рассмотрим более подробно этот важный узел ВОСПИ.

Фотоприемник служит для приема (детектирования) и преобразования оптических сигналов в электрические. Фотоприемник имеет оптический вход (управляющая цепь) и электрический выход (сигнальная цепь). Параметры ФПУ должны быть согласованы с источником излучения и оптической линией связи, с одной стороны, и с электрической нагрузкой, включающей в себя любой требуемый преобразователь электрических сигналов: усилитель, модулятор, декодер, с другой стороны. Как элемент оптической цепи фотоприемник может работать как в аналоговом, так и в цифровом режимах, что определяется формой оптического сигнала, поступающего на его вход.

Фотоэлектрическое преобразование позволяет получить параметры сигнала, при которых аппаратура, подключенная к выходу ФПУ, может нормально функционировать.

Особенности ВОСПИ определяют выбор принципа оптического детектирования, его приборную и аппаратурную реализацию.

Преимущественно распространен принцип прямого детектирования, основу которого составляют полупроводниковые фотоприемники. Ему присущи простота реализации, схемная минимизация, возможность микроминиатюризации и интеграции на уровне фотопреобразований, высокое быстродействие.

Конструктивно ФПУ состоит из фотодиода и широкополосного высокочувствительного усилителя.

Усилители ФПУ традиционно делятся на предварительный и оконечный усилитель.

Фотоэлектрический полупроводниковый приемник излучения преобразует оптический сигнал в электрический. В качестве приемника излучения чаще всего используют фотодиод или лавинный фотодиод.

Предварительный усилитель (ПУ) – усиливает сигнал, обеспечивая наибольшее отношение сигнал/шум. Главной задачей проектирования ФПУ является достижение минимального порога чувствительности. Чем меньше этот порог, тем больше длина регенерационного или усилительного участка. Поэтому ПУ должен быть хорошо согласован с ФЭППИ, обеспечивая эффективную передачу энергии сигнала и малый уровень шума. Входной каскад ПУ выполняется на биполярном транзисторе и имеет входное сопротивление, равное внутреннему сопротивлению ФЭППИ.

Оконечный усилитель (ОУ) – осуществляет усиление, понижающее выходное сопротивление ФПУ, необходимое для работы устройства обработки сигнала.

ФПУ, как правило, работает при уровнях входной мощности, превышающих порог чувствительности. Запас входной мощности необходим для обеспечения надежности связи, так как с течением времени, вследствие старения лазера, мощность передатчика уменьшается.

Приемник излучения и его рабочий режим выбирается исходя из заданных спектрального диапазона порога чувствительности, быстродействия и требуемого динамического диапазона.

В большинстве случаев приходится делать выбор между p-i-n – фотодиодом и лавинным фотодиодом. Последний, хотя и позволяет выиграть в пороге чувствительности, работает в меньшем диапазоне температур, часто требует повышенного напряжения питания, стабилизации режима. Надежность ЛФД, включенного в конкретную схему, может оказаться меньше надежности p-i-n – фотодиода. Уступает ЛФД, p-i-n – диоду и в пределах линейности характеристики детектирования. В качестве фотодиода в аналоговых ВОСПИ с большим динамическим диапазоном используется p-i-n – диод. ЛФД не используется, так как имеет малый динамический диапазон из-за сильной зависимости коэффициента умножения от сигнала.

Следующим узлом ФПУ является предварительный усилитель (ПУ). Шумовые свойства предусилителя, зависят от многих факторов: схемы реализации, типа фотодетектора, рабочей полосы частот, типа используемых транзисторов, коэффициента шума транзистора, выбора его рабочей точки, технологии изготовления, наличия и вида корректируемого фильтра. Для требуемого частотного диапазона шумовые параметры биполярного и полевого транзистора соизмеримы.

После выбора приемника излучения и типа транзистора входного каскада необходимо проектирование схемы предварительного усилителя. Предварительный усилитель (ПУ) усиливает электрический сигнал, обеспечивая наибольшее отношение сигнала к шуму. ПУ должен быть хорошо согласован с приемником излучения, обеспечивая одновременно эффективную передачу энергии сигнала и малый уровень шума. Для= получения
малошумящего усиления применяются схемы самой различной структуры: усилители могут быть дифференциальными и недифференциальными, содержать или не содержать цепи обратной связи и согласующие цепи.

Классификация схем осуществляется по нескольким направлениям. По способу преобразования сигнала во входной цепи различают усилители фотонапряжения, фототока, преобразователи токонапряжения и другие. По величине входного сопротивления усилители подразделяются на высокоимпендансные и низкоимпендансные. Усилители с глубокой обратной связью по напряжению называют трансимпендансными.

Рассмотрим подробнее свойства каждой схемы. Основные преимущества дифференциальных усилителей – это низкие требования к абсолютной величине номиналов элементов и высокая помехозащищенность. Вместе с тем, дифференциальные усилители уступают обычным по шумовым характеристикам: уровень шума в них на 3–5 дБ выше. Дифференциальные усилители применяются в монолитных интегральных схемах и в тех случаях, когда весьма важным требованием может оказаться помехозащищенность, например в вычислительных (схемах) сетях.

Среди схем без обратной связи наибольшее распространение получили высокоимпендансные усилители на полевых транзисторах. Низкоимпендансные усилители применяются главным образом на СВЧ.

Низкоимпендансным усилителем принято называть усилитель с входным сопротивлением 50 Ом. Достоинством усилителя первого типа является возможность достижения минимального порога чувствительности, а недостатками: сравнительно низкий динамический диапазон, высокая чувствительность к действию электромагнитных помех, необходимость индивидуальной настройки, использование высокого входного сопротивления (единицы, десятки МОм), которые приводят к интегрированию сигнала во входной цепи, вызывают частотные искажения. При этом возрастает отношение сигнала к шуму первого каскада усилителя.

Хотя использование большого входного сопротивления помогает максимизировать отношение сигнал/шум в приемнике оптических сигналов, однако оно одновременно порождает неудобства, вызванные необходимостью осуществлять значительную по величине коррекцию.

Первое неудобство состоит в том, что коррекция должна быть индивидуально приспособлена для каждой схемы. Она не может быть установлена заранее. Причина в том, что коэффициент усиления должен изменяться по закону: G(f) = G0· (1+j·2p·f·С·R), а значения Свх и Rвх изменяются от прибора к прибору от схемы к схеме и часто зависят от температуры. В результате каждая схема должна настраиваться индивидуально.

Вторая проблема в том, что значительное изменение коэффициента усиления с частотой означает уменьшение динамического диапазона усилителя.

Положительная обратная связь вводится для компенсации входной емкости. Величина сопротивления нагрузки рассчитывается по формуле

(2.1)

Только входная емкость (Свх) берется компенсированной. Активный, как правило, фильтр K(jw), формирует требуемую частотную характеристику.

Схема с низким входным сопротивлением не нуждается в коррекции АЧХ.

Использование хорошего лавинного фотодиода с коэффициентом усиления М=20, и более гарантирует обеспечение режима детектирования, ограниченного дробным шумом.

Однако, это справедливо для фотодетектора на p-i-n – фотодиоде и увеличение шума в этом случае может быть значительным.

Такой усилитель требует только расчета сопротивления нагрузки Rн по известной, в общем случае, входной емкости и требуемой полосе частот:

.

Хотя входной импульс малой величины и обеспечивает большой динамический диапазон, тепловые шумы ограничивают возможности применения в системах связи.

Обычно предпочитают использовать усилитель с обратной связью. Его основное преимущество – отсутствие необходимости осуществлять какую-либо коррекцию. Шумы такого усилителя могут быть много меньше, чем у обычного усилителя напряжения без коррекции.

Такой усилитель рассматривается как преобразователь фототокнапряжение. Его коэффициент преобразования, равный отношению , имеет размерность сопротивления. С сопротивлением передачи «трансимпедансом» и связано название схемы на рис. 2.4. При достаточно большом (бесконечном) усилении в отсутствии обратной связи сопротивление передачи равно Rос. В отличии от схемы без обратной схемы, где резистор нагрузки имеет то же сопротивление передачи (Rн=Rос), нагрузка в виде трансимпедансного усилителя усиливает мощность. Благодаря действию обратной связи происходит снижение входного сопротивления и может исчезнуть необходимость высокочастотной коррекции, увеличивается динамический диапазон. Выигрыш в динамическом диапазоне примерно равен соотношению коэффициентов усиления при разомкнутой и замкнутой цепи обратной связи.

Использование общей параллельной отрицательной обратной связи позволяет получить очень хорошую стабильность режимов работы по постоянному току всех транзисторов, а также одновременно осуществить коррекцию частотной характеристики ФПУ, выполненное применением данной структуры обеспечивает динамический диапазон на 10 дБ больше, чем усилитель высокоимпедансный, при увеличении шумов примерно на 1 дБ.

Основная проблема усилителей данного типа – обеспечение их устойчивости. Использование протяженной цепи обратной связи, охватывающей усилитель с большим коэффициентом усиления и высоким входным импедансом, делает схему усилителя склонной к самовозбуждению на высоких частотах, вследствие возникновения положительной обратной связи через транзисторную емкость.

Чтобы избежать самовозбуждения, требуется тщательная, продуманная компоновка и эффективная экранировка элементов схемы. Так наименьшими шумами обладают высокоимпедансные усилители с интегрированием во входной цепи. По динамическому диапазону на первом месте оказывается трансимпедансный усилитель, за ним следует низкоимпедансный и высокоимпедансный. По рабочему диапазону частот первенство принадлежит низкоимпедансному усилителю. В меньшем диапазоне частот возможно применение высокоимпедансного и особенно трансимпедансного усилителей.

Учитывая все достоинства и недостатки схем усилителей, выбираем схему трансимпедансного усилителя.

В данном дипломном проекте разрабатывается фотоприемное устройство для короткой линии связи (1 км.).

Предполагаем, что на выходе ФПУ находится профессиональный радиоприемник. ФПУ в нашем случае без системы автоматической регулировки усиления (АРУ), так как есть вероятность, что устройство АРУ будет откликаться на помеху.

3. Выбор и обоснование принципиальной схемы ФПУ

3.1 Выбор и обоснование принципиальной схемы предварительного усилителя ФПУ

В соответствии со структурной схемой приведенной ранее, ФПУ конструктивно делится на два функционально независимых усилителя: предварительный и оконечный.

Рассмотрим предварительный усилитель. Основным требованием, при соблюдении прочих условий (заданной полосы пропускания) предъявляемых к предварительному усилителю является обеспечение заданного отношения сигнал/шум.

Динамический диапазон фотоприемного устройства по минимальному сигналу определяется собственными шумами ФПУ, которые состоят из шумов фотодиода и шумов усилителя.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее