62612 (588808), страница 2

Файл №588808 62612 (Методика расчета и оптимизации ячеек памяти низковольтовых последовательных ЭСППЗУ) 2 страница62612 (588808) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рисунок 1


Рисунок 2

Толщина диоксида может быть увеличена в несколько раз, если использовать туннелирование с шероховатой поверхности поликремния. Структура элемента памяти содержит три слоя поликремния, взаимное расположение которых показано на рисунок 3 (области истока, стока и шины Х, Y для простоты не показаны). Источником электронов при программировании служит электрод 1 первого слоя поликремния, являющийся общей шиной (он соединяется с областью истока транзистора). Плавающий затвор 2 создают нанесением второго, а затвор управления 8 — третьего слоя поликремния. Толщина диоксида между слоями 1 и 2, 2 и 3 около 0,04 мкм. В такой структуре возможно только одностороннее туннелирование с электрода 1 вверх. Обратное туннелирование вниз невозможно, так как нижняя поверхность плавающего затвора гладкая, а напряженность электрического поля из-за большой толщины диэлектрика мала.

Для удаления электронов с плавающего затвора при стирании используют туннелирование вверх и дрейф электронов на управляющий затвор. В обоих режимах программирования и стирания на управляющий затвор (шину Хпрог )подают высокое напряжение 15...20 В. Чтобы при программировании не было перехода электронов с плавающего затвора на управляющий, а при стирании- с электрода 1 на плавающий затвор, между плавающим затвором и специальной управляющей шиной Упрог создают конденсатор связи Cсв. При программировании (рисунок 3) на Упрог подают положительное напряжение U0, дополнительно повышающее потенциал плавающего затвора. Разность потенциалов между ним и управляющим затвором получается малой, и туннелирование с плавающего затвора вверх отсутствует. При стирании (рисунок 4) на управляющей шине Упрог устанавливают нулевое напряжение, понижающее потенциал плавающего затвора. В результате разность потенциалов между затворами 3 и 2 получается высокой и идет интенсивное туннелирование электронов с затвора 2 вверх. В то же время разность потенциалов между электродами 2 и 1 мала и туннелирование с электрода 1 отсутствует.

Элемент памяти по сравнению с предыдущим характеризуется меньшей площадью (15…20 литографических квадратов), что позволяет создать СБИС с большей информационной емкостью (256 Кбит…1Мбит). Из-за гораздо больших токов туннелирования время программирования получается меньше (0,003 мс/байт).


Рисунок 3

Рисунок 4

3. МОДЕЛИРОВАНИЕ ЯЧЕЙКИ ЭСППЗУ

В данной работе будет рассмотрен теоретический анализ и экспериментальные данные по программированию и стиранию ячейки памяти программируемой туннельным током.

Структура такой ячейки изображена на рисунке 5. Это n-канальный транзистор с плавающим затвором. Тонкий окисел (~100 ангстрем) между плавающим затвором и стоком способен пропускать электроны (туннелирование) инжектируемые и поглощаемые плавающим затвором во время операций записи/стирания согласно эффекту Фаулера-Нордхайма.

Во время записи плавающий затвор заряжается отрицательно электронами, туннелирующими из стоковой области через тонкий оксид. Это достигается за счет приложения положительного потенциала к верхнему (управляющему) затвору, в то время как сток и подложка заземлены. Накопившийся отрицательный заряд на плавающем затворе сдвигает пороговое напряжение транзистора на большую положительную величину. При последующем считывании транзистор будет закрыт.

Операция стирания заключается в снятии отрицательного заряда с плавающего затвора с помощью приложенного к стоку высоковольтного импульса, в то время как исток свободен (не подключен), а оба затвора и подложка заземлены. Величина порогового напряжения смещается в отрицательном направлении, и транзистор открывается при последующем чтении.

Во время считывания прикладывается достаточно низкое напряжение, поэтому туннельный ток незначительный и плавающий затвор практически изолирован. При таких условиях считывания заряд нужной величины (информация) может храниться до 10 лет.

В схемах памяти используется двухтранзисторная ячейка. Дополнительный транзистор вводится для изоляции ячейки от воздействия сигналов соседних ячеек во время циклов записи/стирания.

В данной работе рассматривается анализ и моделирование режимов записи/стирания, учитывая эффекты, которые возникают во время стирания.

Рисунок 5

3.1 Упрощенная модель ячейки памяти

Для того чтобы получить представления о работе ячейки используется упрощенная модель эквивалентной схемы прибора, представленная на рисунке 6. Более детальный анализ будет рассмотрен в главе 3.2.

Плотность тока текущего через тонкий окисел приближенно вычисляется при помощи уравнения Фаулера-Нордхайма:

Jtun = Etun (exp ( -/Etun)); (1)

где Etyn это электрическое поле в окисле, а и - константы. Электрическое поле в тонком окисле рассчитывается так:

Etyn = Vtun /Xtun; (2)

где Vtun это напряжение туннелирования через окисел, а Xtun это толщина тонкого окисла. Напряжение туннелирования может быть рассчитано через емкостную эквивалентную схему ячейки

Рисунок 6

3.1.1 Расчет Vtun

Cpp это емкость между плавающим и управляющим затвором, Ctun это емкость тонкого окисла, Cgox это емкость подзатворного окисла между плавающим затвором и подложкой, Qfg это заряд, накопившийся на плавающем затворе. Vtun может быть рассчитан для электрически нейтрального затвора по простому соотношению коэффициентов:

Vtun запись = Vg Kw; (3)

Где Kw = Cpp/(Cpp + Cgox + Ctun); (4)

и Vtun стирание = Vd Ke; (5)

где Ke = 1 - (Ctun/(Cpp + Cgox + Ctyn); (6)

где Vg и Vd напряжения на затворе и истоке соответственно, а коэффициенты Ke и Kw обозначают напряжение, которое проходить сквозь тонкий окисел при стирании и записи соответственно. Формулы (3) и (5) справедливы, только если Qfg=0. Во время записи сохраненный на плавающем затворе потенциал понижает пороговое напряжение тонкого окисла согласно следующей формуле:

Vtun запись= Vg Kw + (Qfg/(Cpp + Cgox + Ctyn) (3’)

Во время стирания отрицательный начальный потенциал плавающего затвора повышает пороговое напряжение тонкого окисла согласно соотношению:

Vtun стирание = Vd Ke – (Qfg/(Cpp + Cgox + Ctyn); (5’)

После завершения операции стирания, когда затвор заряжен положительно последний коэффициент уравнения (5) понижает напряжение потенциал тонкого окисла.

3.1.2 Расчет пороговых напряжений

Начальное пороговое напряжение ячейки, которое соответствует Qfg=0, обозначается как Vti. Начальный заряд смешает порог согласно соотношению:

Vti = -Qfg/Cpp (7)

Используя соотношения (3') и (5') для определения Qfg при снятии импульса записи/стирания пороговые напряжения определяются так:

Vtw = Vti - Qfg/Cpp = Vti + Vg(1 - (V’tun/Kw Vg)) (8)

Vte = Vti - Qfg/Cpp = Vti - Vd(Ke/Kw - (V’tun/Kw Vd)) (9)

Здесь Vtw это порог записи ячейки, а Vte это порог стирания ячейки.Vg и Vd это амплитуды импульсов записи и стирания соответственно, а V’tun это напряжение в тонком окисле после снятия импульса. Предположим, что импульс записи/стирания по времени достаточно длинный, тогда электрическое поле в тонком окисле уменьшится до значений близких 1107В/см. При такой напряженности поля туннелирование практически прекращается. Приближенное значение Vtun может быть получено из выражения (2) и подставлено в (8) и (9) для получения приближенных значений окна программирования ячейки, зависимости параметров ячейки и напряжения программирования. Типичные результаты представлены графиками на рисунке 7.

Для того чтобы увеличить окно ячейки нужно увеличить толщину тонкого окисла и напряжение записи/стирания, причем значения связывающих коэффициентов должны быть максимально приближены друг к другу. Оба связывающих коэффициента должны увеличиваться при уменьшении Ctun и увеличении Cpp. При увеличении толщины тонкого окисла это обычно достигается за счет уменьшения площади тонкого окисла и внедрения дополнительной поликремниевой области перекрытия в транзисторе ячейки. Типичное значение связующих коэффициентов равно 0,7, причем Ke всегда больше Kw. Увеличение емкости подзатворного окисла Cgox увеличивает Ke, но уменьшает Kw.

Рисунок 7

3.1.3 Зависимость порогов во время записи/стирания

Аналитическое выражение зависимости пороговых напряжений ячейки от времени программирования получается при решении следующего дифференциального уравнения:

DQfg/dt = Atun Jtun; (10)

Подставляя это уравнение в (1),(2),(3’),(5’) и (7) получим:

Vtw(t) = Vti + Vg – (1/Kw) (B/ln(A B t + E1); (11)

Vte (t) = Vti – (Vd Ke)/Kw + 1/Kw [ B /(ln (A B t + E2)) ]; (12)

Где A = (Atun )/(Xtun (Cpp + Cgox + Ctun)); (13)

B = Xtun; (14)

E1 = exp[ B/(Kw (Vg + Vti - Vt(0))) ]; (15)

E2 = exp[ B/(Vd Ke + Kw Vt(0) + Kw Vti) ]; (16)

Vt(0) это пороговое напряжение ячейки при t = 0, которое не может быть спутано с Vti – пороговое напряжение нейтральной ячейки. Atun это область тонкого окисла. Надо отметить, что в уравнении (11) пороговое напряжение остается практически неизменным при t = 0, если Vg прикладывается на время меньшее, чем “характеристическая временная константа” , которая определяется следующим выражением:

= (1/AB) exp[ B/(Kw (Vg + Vti – Vt(0)) ]; (17)

При больших значениях времени t пороговое напряжение асимптотически приближается к кривой описанной следующим уравнением:

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее