48531 (588562), страница 4

Файл №588562 48531 (Разработка анимационно-обучающей программы механической системы) 4 страница48531 (588562) страница 42016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Последний член уравнения (1.26) носит название реактивной силы: . Эта сила возникает в результате действия на данное тело присоединяемой (или отделяемой) массы. Если масса присоединяется, то и вектор R совпадает по направлению с вектором u; если же масса отделяется, то и вектор R противоположен вектору u.

Уравнение Мещерского по своей форме совпадает с основным уравнением динамики материальной точки постоянной массы: слева – произведение массы тела на ускорение, справа – действующие на него силы, включая реактивную силу. Однако в случае переменной массы нельзя внести массу под знак дифференцирования и представить левую часть уравнения как производную по времени от импульса, ибо ,

Обратим внимание на два частных случая.

  1. Если u=0. т. е. масса присоединяется или отделяется без скорости относительно тела, то R=0, и уравнение (1.26) принимает вид

где - масса тела в данный момент времени. Это уравнение определяет , например, движение платформы, из которой свободно высыпается песок (см. задачу 10, пункт 1-й).

  1. Если u=-v, т. е. присоединяемая масса неподвижна в выбранной системе отсчета или отделяемая масса становится неподвижной в этой системе, то уравнение (1.28) принимает другой вид

или

иначе говоря, в этом частном случае – и только этом – действие силы F определяет изменение импульса тела с переменной массой. Данный случай реализуется, например, при движении платформы, нагружаемой сыпучим веществом из неподвижного бункера (см. задачу 10, пункт 2-й).

Рассмотрим пример на применение уравнения Мещерского.

Пример. Ракета движется в инерциальной K-системе отсчета в отсутствие внешнего силового поля, причем так, что газовая струя вылетает с постоянной относительно ракеты скоростью u. Найти зависимость скорости ракеты от ее массы , если в момент старта ее масса была равна .

В данном случае F=0 и из уравнения (1.28) следует

.

Проинтегрировав это выражение с учетом начальных условий, получим

где знак минус показывает, что вектор v (скорость ракеты) противоположен по направлению вектору u. Отсюда видно, что скорость ракеты в данном случае (u=const) не зависит от времени сгорания топлива: v определяется только отношением начальной массы ракеты к оставшейся массе m.

Заметим, что если бы вся масса горючего была одновременно выброшена со скоростью u относительно ракеты , то скоростью последней оказалась бы иной. Действительно, если ракета вначале покоилась в выбранной инерциальной системе отсчета, а после одновременного выброса всего горючего приобрела скорость v, то из закона сохранения импульса для системы ракета – горючее следует

,

где u+v - скорость горючего относительно данной системы отсчета. Отсюда

скорость ракеты v в этом случае оказывается меньше, чем в предыдущем (при одинаковых значениях отношения ). В этом нетрудно убедиться, сравнив характер зависимости v от в обоих случаях. С ростом в первом случае (когда вещество отделяется непрерывно) скорость v ракеты, согласно (1), растет неограниченно, во втором же (когда вещество отделяется одновременно) скорость v, согласно (2), стремится к пределу, равному - u.

Задачи к главе 1

1.1. Частица движется с импульсом под действием силы F(t). Пусть a и b – постоянные векторы, причем a b. Полагая, что:

  1. , где - положительная постоянная, найти вектор F в те моменты времени, когда F p;

  2. , где - вектор, противоположный по направлению вектору а, найти вектор p в момент , когда он окажется повернутым на 90по отношению к вектору .

Решение. 1. Сила , т. е. вектор F все время перпендикулярен вектору a. Следовательно, вектор F будет перпендикулярен вектору p в те моменты, когда коэффициент при b в выражении для обращается в нуль. Отсюда и соответствующие значения вектора F равны:

2. Приращение вектора p за промежуток времени есть Интегрируя это уравнение с учетом начальных условий, находим

где, по условию, противоположен вектору а. Вектор p окажется перпендикулярным вектору в момент , когда . В этот момент .



Рис. 6

1.2. Через блок (рис. 6) перекинут шнур на одном конце которого находится лестница с человеком А, а на другом – уравновешивающий груз массы М. Человек , масса которого m, совершил вверх перемещение относительно лестницы и затем остановился. Пренебрегая массами блока и шнура, а также трением в оси блока, найти перемещение центра инерции этой системы.

Решение. Сначала все тела системы покоились, поэтому приращение импульсов тел при движении равно самим импульсам. Силы натяжения шнура слева и справа одинаковы, а следовательно импульсы груза и лестницы с человеком в каждый момент времени будут равны между собой, т. т. , или

,

где v1, v и v2 - - скорости груза, человека и лестницы. Учитывая , что v2= -v1 и v=v2 + v, где v - скорость человека относительно лестницы, получим

v1= (m/2M)v. (1)

С другой стороны , импульс всей системы. Отсюда с учетом (1) найдем

.

И наконец, искомое перемещение

.

Другой способ решения основан на свойстве центра инерции данной системы характеризуется радиусом – вектором

,

где - радиусы-векторы центров инерции груза M, лестницы и человека относительно некоторой точки О данной системы отсчета. Отсюда перемещение центра инерции равно

,

где

-перемещения груза M, лестницы и человека относительно данной системы отсчета. Имея в виду, что получим в результате

.

1.3. система состоит из двух шариков с массами , которые соединены между собой невесомой пружинкой. Шарикам сообщили скорости , как показано на рис.7, после чего система начала двигаться в однородном поле сил тяжести Земли. Пренебрегая сопротивлением воздуха и считая, что в начальный момент пружинка не деформирована, найти:

  1. скорость центра инерции этой системы в зависимости от времени;

  2. внутреннюю механическую энергию системы в процессе движения.



Рис. 7 рис. 8

Решение. 1. Приращение вектора скорости центра инерции, есть . проинтегрировав это уравнение, получим , где -начальная скорость центра инерции. Отсюда

.

  1. Внутренняя механическая энергия системы – это ее энергия

.

4. Шарик с кинетической энергией T, испытав лобовое соударение с первоначально покоившейся упругой гантелью (рис. 8), отлетел в противоположном направлении с кинетической энергией . Массы всех трех шариков одинаковы. Найти энергию колебаний гантели после удара.

Решение. пусть -импульсы налетающего шарика до и после удара, а -импульс и кинетическая энергия гантели как целого после удара, Е -энергия колебаний. Согласно законам сохранения импульса и энергии,

.

Из этих двух уравнений с учетом того, что , получим

.

5 В К-системе частица 1 массы налетает на покоящуюся частицу 2 массы . Заряд каждой частицы равен . Найти минимальное расстояние, на которое они сблизятся при лобовом соударении, если кинетическая энергия частицы 1 вдали от частицы 2 равна .

Рис. 9

Решние . Рассмотрим этот процесс как в К-системе, так и в Ц-системе.

  1. В К-системе в момент наибольшего сближения обе частицы будут двигаться как единое целое со скоростью , которую можно определить на основании закона сохранения импульса:

,

где p1 –импульс налетающей частицы,

С другой стороны, из закона сохранения энергии следует

,

где приращение потенциальной энергии системы

Исключив из этих двух уравнений, найдем

.

  1. В Ц-системе решение наиболее просто: здесь суммарная кинетическая энергия частиц идет целиком на приращение потенциальной энергии системы в момент наибольшего сближения:

,

где , согласно (4.16),

Отсюда легко найти

6. Частица массы с импульсом испытала упругое столкновение с покоившейся частицей массы . Найти импульс первой частицы после столкновения, в результате которого она рассеялась под углом к первоначальному направлению движения.

Решение. Из закона сохранения импульса (рис. 69) находим

где -импульс второй частицы после столкновения.

С другой стороны, из закона сохранения энергии следует, что , где -кинетические энергии первой и второй частиц после столкновения. Преобразуем это равенство с помощью соотношения к виду


Е сли

т о физический смысл имеет только знак плюс перед корнем. Это следует из того, что при этом условии корень будет больше, чем а так как ṕ́’1 – это модуль, то, естественно, он не может быть отрицательным.

Если же m1>m2 , то физический смысл имеют оба знака перед

корнем – ответ в этом случае получается неоднозначным: под углом

импульс рассеянной частицы может иметь одно из двух значений (это зависит от относительного расположения частиц в момент соударения).

1.7. Какую часть η своей кинетической энергии теряет частица массы m1 при упругом рассеянии под предельным углом на покоящейся частице массы m2 , где m1>m2

§ 1.3 Анимационное моделирование процесса обучения механических систем

Характеристики

Тип файла
Документ
Размер
8,9 Mb
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6859
Авторов
на СтудИзбе
272
Средний доход
с одного платного файла
Обучение Подробнее